• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, August 25, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Roadside invader: The higher the traffic, the easier the invasive common ragweed disperses

Bioengineer by Bioengineer
April 14, 2021
in Science News
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Uwe Starfinger

Common ragweed is an annual plant native to parts of the United States and southern Canada. It’s an invasive species that has spread to Europe. An important agricultural weed, this plant is particularly well-adapted to living at roadsides, and there are several theories why.

Its rapid expansion in Europe can’t be explained by its natural dispersal rate, which is limited to distances of around 1 meter. Rather, there are other factors in play, human-mediated, that support its invasion success – along roads, for example, it spreads mainly thanks to agricultural machineries, soil movements, roadside maintenance and road traffic.

Studying common ragweed’s distribution patterns is important, because its allergenic pollen affects human health, mainly in southeast Central Europe, Italy and France. Finding out where it thrives, and why, can help with the management and control of its populations.

This is why scientists Andreas Lemke, Sascha Buchholz, Ingo Kowarik and Moritz von der Lippe of the Technical University of Berlin and Uwe Starfinger of the Julius Kühn Institute set out to explore the drivers of roadside invasions by common ragweed. Mapping 300 km of roadsides in a known ragweed hotspot in Germany’s state of Brandenburg, they recorded plant densities at roadsides along different types of road corridors and subject to different intensities of traffic over a period of five years. They then explored the effect of traffic density and habitat type, and their interactions, on the dynamics of these populations. Their research is published in the open-access, peer-reviewed journal NeoBiota.

Surprisingly, high-traffic road cells displayed a consistently high population growth rate even in shaded and less disturbed road sections – meaning that shading alone would not be enough to control ragweed invasions in these sections. Population growth proceeded even on roadsides with less suitable habitat conditions – but only along high-traffic roads, and declined with reduced traffic intensity. This indicates that seed dispersal by vehicles and by road maintenance can compensate, at least partly, for less favorable habitat conditions. Disturbed low-traffic road cells showed constantly high population growth, highlighting the importance of disturbance events in road corridors as a driver for common ragweed invasions.

These findings have practical implications for habitat and population management of ragweed invasions along road networks. Reducing the established roadside populations and their seed bank in critical parts of the road network, introducing an adjusted mowing regime and establishing a dense vegetation layer can locally weaken, suppress or eradicate roadside ragweed populations.

###

Original source:

Lemke A, Buchholz S, Kowarik I, Starfinger U, von der Lippe M (2021) Interaction of traffic intensity and habitat features shape invasion dynamics of an invasive alien species (Ambrosia artemisiifolia) in a regional road network. NeoBiota 64: 55-175. https://doi.org/10.3897/neobiota.64.58775

Media Contact
Ingo Kowarik
[email protected]

Related Journal Article

http://dx.doi.org/10.3897/neobiota.64.58775

Tags: BiologyEcology/EnvironmentPlant SciencesPopulation Biology
Share12Tweet8Share2ShareShareShare2

Related Posts

Carbon nanotube ‘stitches’ make stronger, lighter composites

Carbon nanotube ‘stitches’ make stronger, lighter composites

August 25, 2025
blank

Revolutionary Cyclic Thioether Additive Boosts Lithium Metal Batteries to 3,000 Stable Cycles!

August 25, 2025

Breakthroughs in Screening Techniques and Point-of-Care Diagnostics Transform Colorectal Cancer Detection

August 25, 2025

Introducing the Second Beijing Consensus on Holistic Integrative Medicine for Managing Helicobacter pylori-Associated Disease-Syndrome

August 25, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    143 shares
    Share 57 Tweet 36
  • Molecules in Focus: Capturing the Timeless Dance of Particles

    142 shares
    Share 57 Tweet 36
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    115 shares
    Share 46 Tweet 29
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    81 shares
    Share 32 Tweet 20

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Carbon nanotube ‘stitches’ make stronger, lighter composites

Revolutionary Cyclic Thioether Additive Boosts Lithium Metal Batteries to 3,000 Stable Cycles!

Breakthroughs in Screening Techniques and Point-of-Care Diagnostics Transform Colorectal Cancer Detection

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.