• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Competing for high status speeds up aging in male baboons

Bioengineer by Bioengineer
April 6, 2021
in Biology
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Study suggests that high social status contributes to accelerated aging in baboons, despite its other advantages

IMAGE

Credit: Beth Archie (CC BY 4.0)

Battling other male baboons to achieve high social status comes with physiological costs that accelerate aging, according to study published today in eLife.

The findings suggest that current life circumstances may be more important contributors to premature aging than early life hardship, at least in baboons.

Chemical changes to DNA, also called epigenetic changes, can be used as a kind of ‘clock’ to measure aging. While these epigenetic changes usually correspond with age, they can also be used to detect signs of premature aging.

“Environmental stressors can make the clock tick faster, so that some individuals appear biologically older than their actual age and experience a higher risk of age-related disease,” explains co-first author Jordan Anderson, a PhD student in Evolutionary Anthropology at Duke University, Durham, North Carolina, US. “We sought to answer what social or early life experiences contribute to accelerated aging in baboons.”

The team measured aging in 245 wild baboons from a well-studied population in Kenya using the epigenetic clock and other methods. They found that the epigenetic clock was a good predictor of chronological age overall. But contrary to what they expected, early life adversity was not a good predictor of accelerated aging in the animals.

Instead, they found that the highest-ranking males showed signs of accelerated aging. Higher body mass index, which is associated with having more lean muscle mass in baboons, was also associated with accelerated aging, likely because of the physical demands of maintaining high status. The team was also able to show that the epigenetic clock sped up as the animals climbed the social ladder and slowed down as they moved down it.

“Our results argue that achieving high rank for male baboons – the best predictor of reproductive success in these animals – imposes costs that are consistent with a ‘live fast, die young,’ life history strategy,” says co-first author Rachel Johnston, Postdoctoral Associate in Evolutionary Anthropology at Duke University.

“While the findings reveal how social pressures can influence aging for males, we don’t see the same effect of rank in female baboons, who are born into their social rank rather than having to fight for it,” adds senior author Jenny Tung, Associate Professor in the Departments of Evolutionary Anthropology and Biology at Duke University, and a Faculty Associate of the Duke University Population Research Institute.

“Our results have important implications for research on the social determinants of health in humans and other animals because they show that ‘high status’ can mean very different things in different contexts. They also highlight the importance of examining the effects of both early life and current life environments on biological aging,” Tung concludes.

###

This study will be published as part of ‘Evolutionary Medicine: A Special Issue’ from eLife. For more information, visit https://elifesciences.org/inside-elife/bb34a238/special-issue-call-for-papers-in-evolutionary-medicine.

Media contact

Emily Packer, Media Relations Manager

eLife

[email protected]

+44 (0)1223 855373

About eLife

eLife is a non-profit organisation created by funders and led by researchers. Our mission is to accelerate discovery by operating a platform for research communication that encourages and recognises the most responsible behaviours. We aim to publish work of the highest standards and importance in all areas of biology and medicine, including Evolutionary Biology, and Genetics and Genomics, while exploring creative new ways to improve how research is assessed and published. eLife receives financial support and strategic guidance from the Howard Hughes Medical Institute, the Knut and Alice Wallenberg Foundation, the Max Planck Society and Wellcome. Learn more at https://elifesciences.org/about.

To read the latest Evolutionary Biology research published in eLife, visit https://elifesciences.org/subjects/evolutionary-biology.

And for the latest in Genetics and Genomics, see https://elifesciences.org/subjects/genetics-genomics.

Media Contact
Emily Packer
[email protected]

Original Source

https://elifesciences.org/for-the-press/dad763a1/competing-for-high-status-speeds-up-aging-in-male-baboons

Related Journal Article

http://dx.doi.org/10.7554/eLife.66128

Tags: AgingBiologyEvolutionGenetics
Share12Tweet8Share2ShareShareShare2

Related Posts

Florida Cane Toad: Complex Spread and Selective Evolution

Florida Cane Toad: Complex Spread and Selective Evolution

February 7, 2026
New Study Uncovers Mechanism Behind Burn Pit Particulate Matter–Induced Lung Inflammation

New Study Uncovers Mechanism Behind Burn Pit Particulate Matter–Induced Lung Inflammation

February 6, 2026

DeepBlastoid: Advancing Automated and Efficient Evaluation of Human Blastoids with Deep Learning

February 6, 2026

Navigating the Gut: The Role of Formic Acid in the Microbiome

February 6, 2026
Please login to join discussion

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Phage-Antibiotic Combo Beats Resistant Peritoneal Infection

Boosting Remote Healthcare: Stepped-Wedge Trial Insights

Barriers and Boosters of Seniors’ Physical Activity in Karachi

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.