• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, September 23, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

How bacteria survive antibiotic treatment

Bioengineer by Bioengineer
December 19, 2016
in Science News
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Multiresistant bacteria Scientists around the world are working hard to win the battle against multi-resistant bacteria. A new publication from the BASP Centre, University of Copenhagen now presents how even sensitive bacteria often manage to survive antibiotic treatment as so-called 'persister cells'. The comprehensive perspective on this phenomenon may help to improve current options of drug treatment and could even inspire the discovery of novel antibiotics targeting these notoriously difficult-to-treat persister bacteria.

In the current issue of the highly regarded scientific journal 'Science', Alexander Harms and colleagues from the BASP Centre, Department of Biology, University of Copenhagen summarise newly discovered molecular mechanisms explaining how bacteria manage to survive antibiotic treatment and cause chronic and recurrent infections.

– Post-Doc Alexander Harms explains, 'This amazing resilience is often due to hibernation in a physiological state called persistence where the bacteria are tolerant to multiple antibiotics and other stressors. Bacterial cells can switch into persistence by activating dedicated physiological programs that literally pull the plug of important cellular processes. Once they are persisters, the bacteria may sit through even long-lasting antibiotic therapy and can resuscitate to cause relapsing infections at any time after the treatment is abandoned'.

Using novel detection methods as shown in the figure, recent work in the field has uncovered the molecular architecture of several cellular pathways underlying the formation of bacterial persisters – and these results confirmed the long-standing notion that persistence is intimately connected to slow growth or dormancy. Bacterial persistence can therefore be compared to hibernation of animals or the durable spores produced by many mushrooms and plants.

Across many different bacteria, these programs are controlled by a regulatory compound known as "magic spot" that plays a central role in the persistence phenomenon. These important discoveries, many of which were accomplished by the BASP Centre, may in the future facilitate the development of improved drug treatment regimens and eventually lead to the development of novel antibiotics.

###

Link to the article in SCIENCE: http://science.sciencemag.org/content/354/6318/aaf4268

Media Contact

Helle Blæsild
[email protected]
45-28-75-20-76

http://www.science.ku.dk/english/

############

Story Source: Materials provided by Scienmag

Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Assessing Technology Impact on Agriculture and Resources

September 23, 2025

Pharmacists: Key Players in Substance Use Disorder Treatment

September 23, 2025

Efficient Lithium/Sodium Iron Silicate Cathodes via Milling

September 23, 2025

Metal-Doped Prussian Blue Nanoparticles Enhance Battery Anodes

September 23, 2025
Please login to join discussion

POPULAR NEWS

  • Physicists Develop Visible Time Crystal for the First Time

    Physicists Develop Visible Time Crystal for the First Time

    69 shares
    Share 28 Tweet 17
  • Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    156 shares
    Share 62 Tweet 39
  • Tailored Gene-Editing Technology Emerges as a Promising Treatment for Fatal Pediatric Diseases

    50 shares
    Share 20 Tweet 13
  • Scientists Achieve Ambient-Temperature Light-Induced Heterolytic Hydrogen Dissociation

    49 shares
    Share 20 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Assessing Technology Impact on Agriculture and Resources

Pharmacists: Key Players in Substance Use Disorder Treatment

Efficient Lithium/Sodium Iron Silicate Cathodes via Milling

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.