• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, August 20, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Depositing Fe species inside ZSM-5 to oxidize cyclohexane to cyclohexanone

Bioengineer by Bioengineer
April 2, 2021
in Chemistry
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: ©Science China Press

The directly catalytic oxidation of alkanes has high atomic economy and application value to form corresponding chemical organic products such as alcohols, aldehydes, ketones and carboxylic acid. It is challenging to achieve efficient and selective oxidation of alkane under mild conditions due to the inert C-H bonds of alkanes.

Many researchers have developed a series of supported iron based catalysts to simulate the alkane biological monooxygenase with iron center atoms. However, traditional methods, such as impregnation method, ion exchange method, etc., are difficult to control the dispersion and the deposition position of iron species on the catalyst support.

Generally, iron species can easily replace the H+ of Brønsted acid sites to reduce the number of Brønsted acid sites, and many types of iron species will be formed on other different potential sites of ZSM-5 (Lewis acid sites and defect sites, etc.). The coexistence of multiple active centers on the catalyst is one of the main reasons for the low selectivity.

Atomic layer deposition (ALD) is an advanced thin film technology by single-layer chemisorption and reaction of vapor precursors on the surface of substrates with atomic and molecular control precision.

Recently, Dr. Bin Zhang and colleagues in the Institute of Coal Chemistry, Chinese Academy of Sciences, report a general strategy to selectively deposit high-dispersed Fe species into the micropores of ZSM-5 to prepare FeOx/ZSM-5 catalysts.

The obtained FeOx/ZSM-5 catalysts perform high selectivity of cyclohexanone (92%-97%), and the catalyst activity is significantly higher than those of the iron-based catalysts reported in the literature. Ferrocene (Fe(Cp)2) is used as a precursor for the deposition since its kinetic diameter is smaller than the pore size of ZSM-5. The framework of ZSM-5 and the Brønsted acid sites are intact during ALD, and the Fe species are selectively deposited onto the defect and Lewis acid sites of ZSM-5. The loading, size and surface electronic state of FeOx species can be precisely controlled by merely changing ALD cycles. The Fe content in the FeOx/ZSM-5 catalyst increases linearly with the increase of ALD cycles. Fe-O-Si bonds are dominantly formed over FeOx/ZSM-5 with a low loading of Fe, while FeOx nanoparticles are generated at a high Fe loading. Compared with the FeOx nanoparticles, the Fe-O-Si species performs higher turnover frequency and stability in the oxidation reaction.

###

See the article: Zhai LM, Zhang B*, Liang HJ, Wu HB, Yang XC, LuoG, Zhao SC, Qin Y. The selective deposition of Fe species inside ZSM-5 for the oxidation of cyclohexane to cyclohexanone. Sci. China Chem., 2021, DOI:10.1007/s11426-020-9968-x.

http://engine.scichina.com/doi/10.1007/s11426-020-9968-x.

Media Contact
Bin Zhang
[email protected]

Related Journal Article

http://dx.doi.org/10.1007/s11426-020-9968-x

Tags: Chemistry/Physics/Materials Sciences
Share12Tweet8Share2ShareShareShare2

Related Posts

Non-Equilibrium Effects Driven by Rarefaction in Shock Wave and Boundary Layer Interactions

Non-Equilibrium Effects Driven by Rarefaction in Shock Wave and Boundary Layer Interactions

August 19, 2025
Serve with a Spectacular Swerve: The Science Behind Spin and Precision

Serve with a Spectacular Swerve: The Science Behind Spin and Precision

August 19, 2025

Enhanced Trap Visualization: Full-Dimensional Imaging Advances Solar Cell Efficiency

August 19, 2025

Chefs and Scientists Collaborate to Explore Microbiology Through Kombucha and Kimchi

August 19, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Molecules in Focus: Capturing the Timeless Dance of Particles

    141 shares
    Share 56 Tweet 35
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    80 shares
    Share 32 Tweet 20
  • Modified DASH Diet Reduces Blood Sugar Levels in Adults with Type 2 Diabetes, Clinical Trial Finds

    60 shares
    Share 24 Tweet 15
  • Predicting Colorectal Cancer Using Lifestyle Factors

    47 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

New Research Reveals Biological Factors Behind Daytime Sleepiness

For Apes, What’s Out of Sight Stays on Their Mind

Methionine Gamma-Lyase: Purification and Anticancer Insights

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.