• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, August 4, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

New ‘bi-molecule’ with multiple technological applications discovered

Bioengineer by Bioengineer
March 25, 2021
in Chemistry
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

University of Granada scientist discovers a new type of ‘bi- molecule’ that could help develop quantum sensors with multiple technological applications

IMAGE

Credit: University of Granada

Dr. Rosario González-Férez, a researcher at the Department of Atomic, Molecular and Nuclear Physics and the “Carlos I” Institute of Theoretical and Computational Physics of the University of Granada, has published the article “Ultralong-Range Rydberg Bi-molecules” in the prestigious scientific journal Physical Review Letters. The results of the study show a new type of bi-molecule formed from two nitric oxide (NO) molecules, both in their ground state and in the Rydberg electronic state.

The work was made possible thanks to the scientific collaboration between the researcher and the Institute for Theoretical Atomic, Molecular and Optical Physics (ITAMP) at Harvard University. The study began during her stay at Harvard between March and July 2020, meaning that the entire process, from data-gathering and analysis to final written conclusions, was conducted during the Covid-19 pandemic. The stay, which was funded by the Fulbright Foundation and the Salvador de Madariaga programme of the Spanish Ministry of Science, Innovation and Universities, enjoyed the scientific collaboration of ITAMP’s Hossein R. Sadeghpour and Janine Shertzer.

This new type of bi-molecule is the result of the union of two molecules of nitric oxide (NO) whose structure is arranged in such a way that the NO is located in one of the poles, while, in the other, is the NO + ion. The electron orbits around both, acting like a “glue” that binds this bi-molecule. In addition, its size corresponds to between 200 and 1,000 times that of NO, and its lifetime is long enough to enable its observation and experimental control, as these fragile systems are easily manipulated by means of very weak electric fields.

This type of bi-molecule enables researchers to implement and study chemical reactions at low temperatures from a quantum perspective and facilitates the investigation of intermolecular interactions at large distances, since they coexist at low temperatures.

Dr. González-Férez observes that the use of these bi-molecules in quantum technologies would be interesting both for the processing of information by entanglement and for the development of quantum sensors, with multiple technological applications in quantum optics and quantum computing.

González-Férez continues her work with two research groups, from the University of British Columbia in Canada and the University of Stuttgart in Germany, which aims to create this bi-molecule experimentally and confirm the theoretical predictions made over the last year.

###

Media Contact
Dr. Rosario González-Férez
[email protected]

Original Source

https://canal.ugr.es/uncategorized/university-of-granada-scientist-discovers-a-new-type-of-bi-molecule-that-could-help-develop-quantum-sensors-with-multiple-technological-applications/

Tags: Atomic/Molecular/Particle PhysicsChemistry/Physics/Materials SciencesMolecular PhysicsNuclear Physics
Share12Tweet8Share2ShareShareShare2

Related Posts

Catalytic C(sp2) Expansion of Alkylboranes

Catalytic C(sp2) Expansion of Alkylboranes

August 4, 2025
Metal–Sulfur Sites Boost MOF Hydrogenation Catalysis

Metal–Sulfur Sites Boost MOF Hydrogenation Catalysis

August 3, 2025

Bright Excitons Enable Optical Spin State Control

August 3, 2025

Flame Synthesis Creates Custom High-Entropy Metal Nanomaterials

August 2, 2025
Please login to join discussion

POPULAR NEWS

  • Blind to the Burn

    Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    60 shares
    Share 24 Tweet 15
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    54 shares
    Share 22 Tweet 14
  • Predicting Colorectal Cancer Using Lifestyle Factors

    44 shares
    Share 18 Tweet 11
  • Dr. Miriam Merad Honored with French Knighthood for Groundbreaking Contributions to Science and Medicine

    46 shares
    Share 18 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Debating Microplastics in Blood: New Analysis Sparks Discussion

Psychedelics and Non-Hallucinogenic Analogs Activate the Same Receptor—But Only to a Certain Extent

Urinary Tract Cancer Trends in Golestan Revealed

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.