• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, November 6, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Death enables complexity in chemical evolution

Bioengineer by Bioengineer
March 17, 2021
in Chemistry
Reading Time: 4 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

How to beat Spiegelman’s monster

IMAGE

Credit: Sylvia Germes

Simple systems can reproduce faster than complex ones. So, how can the complexity of life have arisen from simple chemical beginnings? Starting with a simple system of self-replicating fibres, chemists at the University of Groningen have discovered that upon introducing a molecule that attacks the replicators, the more complex structures have an advantage. This system shows the way forward in elucidating how life can originate from lifeless matter. The results were published on 10 March in the journal Angewandte Chemie.

The road to answering the question of how life originated is guarded by Spiegelman’s monster, named after the American molecular biologist Sol Spiegelman, who some 55 years ago described the tendency of replicators to become smaller when they were allowed to evolve. ‘Complexity is a disadvantage during replication, so how did the complexity of life evolve?’ asked Sijbren Otto, Professor of Systems Chemistry at the University of Groningen. He previously developed a self-replicating system in which self-replication produces fibres from simple building blocks and, now, he has found a way to beat the monster.

Death

‘To achieve this, we introduced death into our system,’ Otto explains. His fibres are made up of stacked rings that are self-assembled from single building blocks. The number of building blocks in a ring can vary, but stacks always contain rings of the same size. Otto and his team tweaked the system in such a way that rings of two different sizes were created, containing either three or six building blocks.

Under normal circumstances, fibres that are made up of small rings will outgrow the fibres with larger rings. ‘However, when we added a compound that breaks up rings inside the fibres, we found that the bigger rings were more resistant. This means that the more complex fibres will dominate, despite the smaller rings replicating faster. Fibres that are made from small rings are more easily “killed”.’

Experiments

Otto acknowledges that the difference in complexity between the two types of fibres is small. ‘We did find that the fibres from the larger rings were better catalysts for the benchmark retro-aldol reaction than the simpler fibres that are made from rings with three building blocks. But then again, this reaction doesn’t benefit the fibres.’ However, the added complexity protects the fibres from destruction, probably by shielding the sulphur-sulphur bonds that link the building blocks into rings.

‘All in all, we have now shown that it is possible to beat Spiegelman’s monster,’ says Otto. ‘We did this in a particular way, by introducing chemical destruction, but there may be other routes. For us, the next step is to find out how much complexity we can create in this manner.’ His team is now working on a way to automate the reaction, which depends on a delicate balance between the processes of replication and destruction. ‘At the moment, it needs constant supervision and this limits the time that we can run it.’

Variants

The new system is the first of its kind and opens a route to more complex chemical evolution. ‘In order to achieve real Darwinian evolution that leads to new things, we will need more complex systems with more than one building block,’ says Otto. The trick will be to design a system that allows for the right amount of variation. ‘When you have unlimited variation, the system won’t go anywhere, it will just produce small amounts of all kinds of variants.’ In contrast, if there is very little variation, nothing really new will appear.

The results that were presented in the latest paper show that, starting from simple precursors, complexity can increase in the course of evolution. ‘This means that we can now see a way forward. But the journey to producing artificial life through chemical evolution is still a long one,’ says Otto. However, he has beaten the monster guarding the road to his destination.

Simple Science Summary

One of the big questions in science is how life can originate from lifeless matter. Chemists at the University of Groningen have developed a system in which self-replicating fibres evolve. However, self-replicating systems generally favour more simple replicators since they replicate faster. Through ‘survival of the simplest’, systems will never produce the complexity that is necessary for life. This problem was solved by adding a substance that can break up the replicators, it ‘kills’ them. It turned out that more complex replicators are protected against this destruction, which means that in the presence of death, complex replicators can outcompete simpler ones.

###

Reference: Shuo Yang, Gael Schaeffer, Elio Mattia, Omer Markovitch, Kai Liu, Andreas S. Hussain, Jim Ottelé, Ankush Sood and Sijbren Otto: Chemical Fueling Enables Molecular Complexification of Self?Replicators. Angewandte Chemie 10 March 2021

Media Contact
Rene Fransen
[email protected]

Original Source

https://www.rug.nl/sciencelinx/nieuws/2021/03/de-dood-maakt-complexiteit-mogelijk-in-chemische-evolutie?lang=en

Related Journal Article

http://dx.doi.org/10.1002/anie.202016196

Tags: BiochemistryChemistry/Physics/Materials SciencesEvolution
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Scientists Discover Temperature’s Key Role in RhRu₃Ox Performance During Acidic Water Oxidation

November 6, 2025
Breakthrough Hyperspectral Camera Captures First Precise Altitude Map of Blue Aurora

Breakthrough Hyperspectral Camera Captures First Precise Altitude Map of Blue Aurora

November 6, 2025

Michigan Startup Innovates Clothing Labels to Enhance Recycling and Brand Authentication

November 5, 2025

Kono Honored with American Physical Society’s Isakson Prize

November 5, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1299 shares
    Share 519 Tweet 324
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    313 shares
    Share 125 Tweet 78
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    205 shares
    Share 82 Tweet 51
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    138 shares
    Share 55 Tweet 35

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Children’s Cardiomyopathies: MRI Insights from Experts

Alien Nudibranch: Scyphozoan Predation and Nematocyst Dynamics

Unraveling Causes and Solutions for Same-Day Surgery Cancellations

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 68 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.