• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, November 21, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Researchers identify barriers to use of surface electromyography in neurorehabilitation

Bioengineer by Bioengineer
March 17, 2021
in Health
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Kessler Foundation team proposes comprehensive approach to integrating surface electromyography into clinical practice as path to improving rehabilitative care for individuals with spinal cord injury

IMAGE

Credit: Kessler Foundation

East Hanover, NJ. March 17, 2021. Kessler Foundation researchers have identified several practical and technical barriers to the widespread use of surface electromyography (sEMG) in clinical neurorehabilitation. Based on their holistic analysis of these factors, the researchers suggest a collaborative, interdisciplinary, and unified approach to enable rehabilitation professionals to routinely use sEMG. The article, “Use of Surface EMG in Clinical Rehabilitation of Individuals With SCI: Barriers and Future Considerations” (doi: 10.3389/fneur.2020.578559), was published December 18, 2020, in Frontiers in Neurology. It is available open access at https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7780850/

The authors are Rakesh Pilkar, PhD, Kamyar Momeni, PhD, Arvind Ramanujam, Manikandan Ravi, Erica Garbarini, and Gail F. Forrest, PhD, affiliated with the Center for Mobility and Rehabilitation Engineering Research and the Tim and Caroline Reynolds Center for Spinal Stimulation at Kessler Foundation.

sEMG is a noninvasive technology that detects, records, and interprets the electrical activity of muscles. The quantifiable information on myoelectric output recorded by sEMG is extremely useful in assessing impairment and potentially determining patient-specific and effective interventions for individuals with spinal cord injury (SCI). However, while sEMG is commonly used in neurorehabilitation research, its integration into clinical practice has been limited, according to lead author Dr. Pilkar, senior research scientist at the Center for Mobility and Rehabilitation Engineering Research.

In their analysis, the research team determined several factors that prevent widespread use of sEMG in clinical practice. “One major obstacle is integrating the time-consuming aspects of sEMG into the already demanding schedule of physical therapists, occupational therapists, and other clinicians,” explained Dr. Pilkar. “Also, clinicians are often unfamiliar with technical aspects of sEMG data processing and may not have been exposed to or trained in certain aspects of this technology,” he added.

The research team also identified technical challenges such as transferring the frequent research updates to the sEMG systems used in a clinical setting; lack of user-friendly interfaces; and the need for a standardized, multidisciplinary approach to the handling and interpretation of data. An additional consideration, specific to research in SCI, is that reading and interpreting EMGs for this population requires an additional skillset, as the physiological and structural state of the spinal cord affect how data are interpreted.

To overcome these obstacles, Kessler researchers propose a series of actions to facilitate the use of sEMG by rehabilitation professions. First, including hands-on sEMG experience in educational and professional training programs, and exposing trainees to non-clinical experts in complementary fields such as engineers, technicians, and data scientists. Second, developing simpler, more user-friendly technology interfaces, as well as offering open-access user tutorials to make it easier for clinicians to integrate and use sEMG. Third, codifying a means to regularly transfer research-based knowledge about sEMG and its relevance to SCI rehabilitation from researchers to clinicians will empower rehabilitation professionals to use sEMG with more confidence.

“Addressing these barriers will improve our ability to objectively assess neuromuscular outcomes,” Dr. Pilkar predicted, “which is fundamental to developing interventions that improve motor function and mobility in individuals with deficits caused by SCI.”

###

Funding sources: New Jersey Commission on Spinal Cord Research (CSCR20ERG013, 314 CSCR14ERG007) and Kessler Foundation

About Kessler Foundation

Kessler Foundation, a major nonprofit organization in the field of disability, is a global leader in rehabilitation research that seeks to improve cognition, mobility and long-term outcomes, including employment, for people with neurological disabilities caused by diseases and injuries of the brain and spinal cord. Kessler Foundation leads the nation in funding innovative programs that expand opportunities for employment for people with disabilities. For more information, visit KesslerFoundation.org.
For more information, or to interview an expert, contact: Carolann Murphy, 973.324.8382, [email protected]

Media Contact
Carolann Murphy
[email protected]

Related Journal Article

http://dx.doi.org/10.3389/fneur.2020.578559

Tags: Biomedical/Environmental/Chemical EngineeringDisabled PersonsHealth CareMedical EducationMusculatureRehabilitation/Prosthetics/Plastic SurgeryResearch/DevelopmentTechnology/Engineering/Computer ScienceTrauma/Injury
Share12Tweet8Share2ShareShareShare2

Related Posts

Nanozyme Hydrogel Breaks ROS-Ferroptosis Cycle for Disc Repair

November 21, 2025

Environmental Chemicals and Hormone-Positive Breast Cancer Risk

November 21, 2025

Liver-like Cells Control Lipids During Starvation in Flies

November 21, 2025

Exploring Autism: Behavior Patterns and Personality Links

November 21, 2025
Please login to join discussion

POPULAR NEWS

  • New Research Unveils the Pathway for CEOs to Achieve Social Media Stardom

    New Research Unveils the Pathway for CEOs to Achieve Social Media Stardom

    202 shares
    Share 81 Tweet 51
  • Scientists Uncover Chameleon’s Telephone-Cord-Like Optic Nerves, A Feature Missed by Aristotle and Newton

    119 shares
    Share 48 Tweet 30
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    211 shares
    Share 84 Tweet 53
  • Neurological Impacts of COVID and MIS-C in Children

    91 shares
    Share 36 Tweet 23

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Nanozyme Hydrogel Breaks ROS-Ferroptosis Cycle for Disc Repair

“Exploring Advanced Techniques for Change Point Detection”

Environmental Chemicals and Hormone-Positive Breast Cancer Risk

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 69 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.