• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, November 6, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Cu-based small-pore zeolites for deNOx

Bioengineer by Bioengineer
March 17, 2021
in Chemistry
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: ©Science China Press

The diesel engine is the backbone of transportation due to its irreplaceability as the primary power source for the freight, navigation and marine engine industries and non-road engineering machinery for the foreseeable future. However, the control of contaminants from fuel combustion has become an urgent global concern. Nitrogen oxides are the primary pollutants from transportation and can contribute to the formation of haze, photochemical smog and acid rain. Selective catalytic reduction of NOx with ammonia (NH3-SCR) technology has been successfully and commercially applied for controlling pollution from diesel vehicle exhaust. The development of efficient and stable NH3-SCR catalysts has been pursued by scientists in the past decades to meet the complicated operating conditions in these vehicles.

Cu-based small-pore zeolites have been demonstrated to be very promising candidates for efficient and stable NH3-SCR catalysts due to their unique structural features and physicochemical properties, e.g., small-pore structure, large cavity, large ion-exchange sites and ligand effect between Cu ions and reactant NH3. As a representative example, Cu-SSZ-13 small-pore zeolite has been commercially utilized to eliminate NOx from diesel vehicles.

In a new overview published in the Beijing-based National Science Review, scientists at Chinese Academy of Sciences, Beijing University of Chemical Technology and Zhejiang University present the latest advances in Cu-based small-pore zeolites applied to the NH3-SCR reaction. They summarize the major advances in Cu-SSZ-13 applied to the NH3-SCR reaction, including the state of copper species, the standard and fast SCR reaction mechanisms, the hydrothermal deactivation mechanism, poisoning resistance and synthetic methodology. They give a valuable summary of new insights on the matching between SCR catalyst design principles and the characteristics of Cu2+-exchanged zeolitic catalysts, highlighting the significant opportunity presented by zeolite-based catalysts. Moreover, more hydrothermally stable Cu-AEI and Cu-LTA zeolites are elaborated as well as other alternative zeolites applied to NH3-SCR. Principles for designing zeolites with excellent NH3-SCR performance and hydrothermal stability are proposed. These scientists likewise outlined the potential development directions of future Cu-based small-pore zeolites.

“In fact, zeolites with small-pore structures and adequate ion-exchange sites have great potential for utilization as NH3-SCR catalysts with high deNOx efficiency and hydrothermal stability,” they state from a broader perspective. Development of new types of small-pore zeolites with high SCR activity and hydrothermal stability is still worthwhile based on the design principles proposed in the review, since there is still considerable room in the small-pore zeolite family for researchers to explore.

###

See the article:

Yulong Shan, Jinpeng Du, Yan Zhang, Wenpo Shan, Xiaoyan Shi, Yunbo Yu, Runduo Zhang, Xiangju Meng, Feng-Shou Xiao, Hong He.

Selective catalytic reduction of NOx with NH3: opportunities and challenges of Cu-based small-pore zeolites.

Natl Sci Rev nwab010

https://doi.org/10.1093/nsr/nwab010

The National Science Review is the first comprehensive scholarly journal released in English in China that is aimed at linking the country’s rapidly advancing community of scientists with the global frontiers of science and technology. The journal also aims to shine a worldwide spotlight on scientific research advances across China.

Media Contact
Hong He
[email protected]

Related Journal Article

http://dx.doi.org/10.1093/nsr/nwab010

Tags: Chemistry/Physics/Materials Sciences
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Scientists Discover Temperature’s Key Role in RhRu₃Ox Performance During Acidic Water Oxidation

November 6, 2025
Breakthrough Hyperspectral Camera Captures First Precise Altitude Map of Blue Aurora

Breakthrough Hyperspectral Camera Captures First Precise Altitude Map of Blue Aurora

November 6, 2025

Michigan Startup Innovates Clothing Labels to Enhance Recycling and Brand Authentication

November 5, 2025

Kono Honored with American Physical Society’s Isakson Prize

November 5, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1299 shares
    Share 519 Tweet 324
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    313 shares
    Share 125 Tweet 78
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    206 shares
    Share 82 Tweet 52
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    138 shares
    Share 55 Tweet 35

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Unleashing β-Glucosidase from Rasamsonia for Sugarcane Saccharification

Millisecond Qubit Lifetimes Achieved in 2D

Ethiopian Traditional Medicine: Herbal Remedies in Menz Keya

Subscribe to Blog via Email

Success! An email was just sent to confirm your subscription. Please find the email now and click 'Confirm' to start subscribing.

Join 69 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.