• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, August 17, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Bacteria adapt syringe apparatus to changing conditions

Bioengineer by Bioengineer
March 15, 2021
in Biology
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Study shows how pathogenic bacteria can adapt to varying conditions of the digestive tract

IMAGE

Credit: Max Planck Institute for Terrestrial Microbiology

Basic, acidic, basic again: for pathogenic bacteria such as Salmonella, the human digestive tract is a sea change. So how do the bacteria manage to react to these changes? A team of researchers from the Max Planck Institute for Terrestrial Microbiology in Marburg led by Andreas Diepold has now provided a possible explanation: pathogenic bacteria can change components of their injection apparatus on the fly – like changing the tires on a moving car – to enable a rapid response.

Some of the best-known human pathogens – from the plague bacterium Yersinia pestis to the diarrhea pathogen Salmonella – use a tiny hypodermic needle to inject disease-causing proteins into their host’s cells, thereby manipulating them. This needle is part of the so-called type III secretion system (T3SS), without which most of these pathogens cannot replicate in the body.

Only recently it was discovered that large parts of the T3SS are not firmly anchored to the main part of the system, but are constantly exchanging during function. However, the significance of this phenomenon remained unclear. Researchers in the laboratory of Andreas Diepold at the Max Planck Institute for Terrestrial Microbiology have now discovered that this dynamic behavior allows the bacteria to quickly adapt the structure and function of the injection apparatus to external conditions.

The digestive system: a sea change for bacteria

Human digestion starts with a neutral to slightly alkaline environment in the mouth and esophagus, which the addition of gastric acids suddenly changes to strongly acidic in the stomach – an environment that many pathogens do not survive. The actual target of Yersinia enterocolitica, the pathogenic bacteria investigated in the study, is the intestine. Here, pH-neutral conditions are restored.

But how do the bacteria manage to adapt so quickly to the changing conditions, and how is this controlled? PhD student Stephan Wimmi, the first author of the study, was able to demonstrate that a protein in the bacteria’s membrane acts as a sensor for the pH value. In a collaboration with Ulrike Endesfelder’s lab at the Max Planck Institute, he found that this protein becomes more motile at low (= acidic) pH and thus transmits the signal to the T3SS components inside the bacterium.

Flexibility prevents misfiring

In an acidic environment like the stomach, the mobile components do not bind to the rest of the apparatus (including the needle itself), so that the injection system remains inactive. As soon as the bacteria enter a pH-neutral environment – as it is found in the intestine -, the dynamic proteins reassemble, so that the T3SS can quickly become active at these sites – to the possible distress of the infected person.

The researchers speculate that the newly discovered effect may allow the bacteria to prevent an energy-consuming “misfiring” of the secretion system in the wrong environment, which could even activate the host’s immune response. On the other hand, the mobility and dynamics of the structure allows the system to be rapidly reassembled and activated under appropriate conditions.

Protein mobility and exchange are increasingly being discovered in complexes and nanomachines across all domains of life; however, the utility of these dynamics is mostly not understood. The new results from Marburg show how protein exchange allows to respond flexibly to external circumstances – an immense advantage, not only for bacteria.

###

Original publication

Wimmi, S.; Balinovic, A.; Jeckel, H.; Selinger, L.; Lampaki, D.; Eisemann, E.; Meuskens, I.; Linke, D.; Drescher, K.; Endesfelder, U.; Diepold, A.
Dynamic relocalization of cytosolic type III secretion system components prevents premature protein secretion at low external pH
Nature Communications 12, 1625 (2021)

Media Contact
Dr. Andreas Diepold
[email protected]

Original Source

https://www.mpg.de/16572901/0311-terr-mobility-allows-adaptation-153410-x

Related Journal Article

http://dx.doi.org/10.1038/s41467-021-21863-4

Tags: BiologyMicrobiology
Share12Tweet8Share2ShareShareShare2

Related Posts

Unveiling Ancient Insights Behind Modern Cytoskeleton Evolution

Unveiling Ancient Insights Behind Modern Cytoskeleton Evolution

August 15, 2025
blank

Researchers Identify Molecular “Switch” Driving Chemoresistance in Blood Cancer

August 15, 2025

First Real-Time Recording of Human Embryo Implantation Achieved

August 15, 2025

Ecophysiology and Spread of Freshwater SAR11-IIIb

August 15, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Molecules in Focus: Capturing the Timeless Dance of Particles

    140 shares
    Share 56 Tweet 35
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    79 shares
    Share 32 Tweet 20
  • Modified DASH Diet Reduces Blood Sugar Levels in Adults with Type 2 Diabetes, Clinical Trial Finds

    59 shares
    Share 24 Tweet 15
  • Predicting Colorectal Cancer Using Lifestyle Factors

    47 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

New Metabolic Inflammation Model Explains Teen Reproductive Issues

Mpox Virus Impact in SIVmac239-Infected Macaques

Epigenetic Mechanisms Shaping Thyroid Cancer Therapy

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.