• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, August 20, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Real-time observation of frequency Bloch oscillations with fibre loop modulation

Bioengineer by Bioengineer
March 11, 2021
in Chemistry
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: by Hao Chen, NingNing Yang, Chengzhi Qin, Wenwan Li, Bing Wang, Tianwen Han, Chi Zhang, Weiwei Liu, Kai Wang, Hua Long, Xinliang Zhang and Peixiang Lu

BOs describe the periodic movement of electrons in solids to which an external static electric field is applied. However, it is challenging to measure the BOs directly in natural solids since the relaxation time of electrons is usually much shorter than the oscillation period. To date, analogies of electron BOs have been extended to the synthetic dimensions of time, frequency and angular momenta. In previous studies, the frequency BOs have been experimentally demonstrated in a nonlinear fibre with cross-phase modulation. However, the frequency spectrum has been obtained only at the output of the fibre, and thus the evolution process of BOs has been measured only indirectly. In addition, frequency BOs have been theoretically demonstrated in micro-resonators under temporal modulation. Considering the compact structure of ring resonators, the direct observation of BOs still faces difficulties in compensating for the power reduction when collecting signals.

In a new paper published in Light Science & Application, a team of scientists, led by Professor Bing Wang from School of Physics and Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, China, and co-workers have directly observed the frequency BOs in a modulated fibre loop with time detuning. The spectrum of the incident optical pulse experienced a periodic movement in the frequency lattice formed by the phase modulation. The time detuning produced an effective electric-field force in the lattice, which was associated with the effective vector potential varying with the spectrum evolution. Additionally, the transient evolution of the spectrum was measured in real time by using the dispersive Fourier transformation (DFT) technique. Based on the frequency-domain BOs, a maximum frequency shift up to 82 GHz was achieved. The bandwidth of the input pulse was also broadened up to 312 GHz. The study offers a promising approach to realizing BOs in synthetic dimensions and may find applications in frequency manipulations in optical fibre communication systems. These scientists summarize the principle of the work:

“The phase modulation induces the coupling between the adjacent frequency modes which constructs a lattice in the frequency dimension. As the optical pulse propagates in fibre loop, the roundtrip time can be adjusted by using an optical delay line. A small time detuning can be introduced between the pulse circulation time and modulation period, which serves as an effective electric-field force in the frequency lattice and thus land thus gives rise to frequency BOs. We show that the vector potential can also contribute to generation of the effective force, which varies with the propagation distance. “

“To realize real-time measurement of the pulse spectrum coupled out from the loop, a spectroscope based on the DFT is connected at the end of the fibre-loop circuit. A long dispersion-compensating fibre performs a Fourier transform, which maps the spectrum envelope of the optical pulse into a time-domain waveform. Thanks to the dispersion in fibre, real-time measurement of the frequency spectrum with a resolution of ~9.8 GHz can be achieved.”

“We implement the incidence of both short and broad pulses and directly observe the oscillating and breathing modes of frequency BOs. As the short pulse propagates in the fibre loop, one sees that the spectrum of the incident pulse evolves along a cosinoidal trajectory, referring to frequency BOs. For a broad pulse, the spectrum manifests a breathing pattern accompanied by a self-focusing effect during evolution.” they added.

“Based on the present method, the spectrum manipulations overcome the microelectronic bandwidth limitation. This study may find many applications in high-efficiency frequency conversion and signal processing. Additionally, in the aid of BOs, we verified that the vector gauge potential can be employed to manipulate the optical properties of photons in synthetic frequency lattice, which provides a unique way to control light, especially in the field of topological photonics.” the scientists forecast.

###

Media Contact
Bing Wang
[email protected]

Related Journal Article

http://dx.doi.org/10.1038/s41377-021-00494-w

Tags: Chemistry/Physics/Materials SciencesOptics
Share12Tweet8Share2ShareShareShare2

Related Posts

Non-Equilibrium Effects Driven by Rarefaction in Shock Wave and Boundary Layer Interactions

Non-Equilibrium Effects Driven by Rarefaction in Shock Wave and Boundary Layer Interactions

August 19, 2025
Serve with a Spectacular Swerve: The Science Behind Spin and Precision

Serve with a Spectacular Swerve: The Science Behind Spin and Precision

August 19, 2025

Enhanced Trap Visualization: Full-Dimensional Imaging Advances Solar Cell Efficiency

August 19, 2025

Chefs and Scientists Collaborate to Explore Microbiology Through Kombucha and Kimchi

August 19, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Molecules in Focus: Capturing the Timeless Dance of Particles

    141 shares
    Share 56 Tweet 35
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    80 shares
    Share 32 Tweet 20
  • Modified DASH Diet Reduces Blood Sugar Levels in Adults with Type 2 Diabetes, Clinical Trial Finds

    60 shares
    Share 24 Tweet 15
  • Predicting Colorectal Cancer Using Lifestyle Factors

    47 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

New Research Reveals Biological Factors Behind Daytime Sleepiness

For Apes, What’s Out of Sight Stays on Their Mind

Methionine Gamma-Lyase: Purification and Anticancer Insights

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.