• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, August 26, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Researchers achieve meter-scale optical coherence tomography for first time

Bioengineer by Bioengineer
December 15, 2016
in Science News
Reading Time: 4 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: James G. Fujimoto, Massachusetts Institute of Technology

WASHINGTON — An industry-academic collaboration has achieved the first optical coherence tomography (OCT) images of cubic meter volumes. With OCT's ability to provide difficult-to-obtain information on material composition, subsurface structure, coatings, surface roughness and other properties, this advance could open up many new uses for OCT in industry, manufacturing and medicine. The achievement also represents important progress toward developing a high-speed, low-cost OCT system on a single integrated circuit chip.

"Our study demonstrates world-record results in cubic meter volume imaging, with at least an order of magnitude larger depth range and volume compared to previous demonstrations of three-dimensional OCT," said James G. Fujimoto of the Massachusetts Institute of Technology (MIT), Massachusetts. "These results provide a proof-of-principle demonstration for using OCT in this new regime."

OCT, first invented by Fujimoto's group and collaborators in the 1990s, is now the standard of care in ophthalmology and is increasingly used in cardiology and gastroenterology. Although OCT provides useful 3-D images with micron-scale resolution, it has been limited to imaging depths of just millimeters to a few centimeters.

In The Optical Society's journal for high impact research, Optica, the researchers report high speed, 3-D OCT imaging with 15-micron resolution over a 1.5-meter area. They demonstrated the new OCT approach by imaging a mannequin, a bicycle and models of a human brain and skull. They also conducted measurements of objects ranging in scale from meters to microns.

Multiple scales over long ranges

In addition to the advantages of high speeds and fine resolution, OCT enables imaging, profiling and distance measurement at multiple depths simultaneously while rejecting stray light.

"Long-range OCT is a new range of operation that requires extremely high performance light sources, integrated optical receivers and signal processing," Fujimoto said. Range in OCT refers to the depth range over which measurements can be simultaneously taken. It is possible to position the center of the OCT range very close to or far away from the imaging instrument.

The new technique could be particularly useful for industrial and manufacturing settings, where it could potentially be used to monitor processes, take technical measurements and nondestructively evaluate materials. Macro-scale OCT could also enhance medical imaging, for example, by providing three-dimensional measurements in laparoscopy or mapping structures such as the upper airway.

Telecom advances bring OCT improvements

The light source that enables meter-range OCT is a tunable vertical cavity surface-emitting laser (VCSEL) developed by Thorlabs Inc. and Praevium Research. It uses a MEMS device to rapidly change, or sweep, the laser's wavelength over time to perform what is called swept-source OCT.

"Research by our group at MIT and our collaborators at Praevium Research and Thorlabs indicated that the coherence length of the VCSEL source was orders of magnitude longer than other swept laser technologies suitable for OCT, which suggested the possibility of long-range OCT imaging," said Ben Potsaid of MIT and Thorlabs Inc., coauthor of the paper.

Although the MIT researchers have experimented with the VCSEL light source for several years, light detection and data acquisition remained a challenge. These hurdles were overcome by advanced optical components designed for telecommunications applications.

In the new work, the researchers used a new silicon photonics coherent optical receiver developed by Acacia Communications that replaced several bulky OCT components with integrated optics on a tiny, low-cost, single-chip photonic integrated circuit (PIC). Importantly, the PIC receiver supports the very high electrical frequencies and wide range of optical wavelengths required for swept-source OCT while also enabling what is known as quadrature detection, which doubles the OCT imaging range for a given data acquisition speed.

"The development of OCT in the early 1990s greatly benefited from components and methods used in fiber optical communications," said Fujimoto. "And still, 25 years later, advances in the optical communications industry continue to greatly benefit OCT."

In the paper, the researchers showed that meter-range OCT can obtain a strong signal from surfaces of varying geometry and materials. Their tests also indicated the technique's performance has not reached the fundamental limits for the VCSEL laser source or PIC receiver.

OCT-on-a-chip

The researchers are working to develop and utilize even more low-cost, high-speed components with the goal of speeding up the data acquisition and processing steps. This could eventually allow real-time OCT imaging using customized integrated circuit chips.

"As PIC technology continues to advance, one can realistically expect full OCT systems on a single chip within the next five years, dramatically lowering the size and cost," said Chris Doerr of Acacia Communications, coauthor of the paper. "This would allow more people all over the world to benefit from OCT and open up new applications."

###

Paper: Z. Wang, B. Potsaid, L. Chen, C. Doerr, H.-C. Lee, T. Nielson, V. Jayaraman, A.E. Cable, E. Swanson, J.G. Fujimoto, "Cubic meter volume optical coherence tomography," Optica, 4, 10, 1496 (2016). DOI: 10.1364/optica.3.001496

About Optica

Optica is an open-access, online-only journal dedicated to the rapid dissemination of high-impact peer-reviewed research across the entire spectrum of optics and photonics. Published monthly by The Optical Society (OSA), Optica provides a forum for pioneering research to be swiftly accessed by the international community, whether that research is theoretical or experimental, fundamental or applied. Optica maintains a distinguished editorial board of more than 40 associate editors from around the world and is overseen by Editor-in-Chief Alex Gaeta, Columbia University, USA. For more information, visit Optica.

About The Optical Society

Founded in 1916, The Optical Society (OSA) is the leading professional organization for scientists, engineers, students and business leaders who fuel discoveries, shape real-life applications and accelerate achievements in the science of light. Through world-renowned publications, meetings and membership initiatives, OSA provides quality research, inspired interactions and dedicated resources for its extensive global network of optics and photonics experts. For more information, visit osa.org/100.

Media Contact

Rebecca Andersen
[email protected]
202-416-1443
@opticalsociety

http://www.osa.org

############

Story Source: Materials provided by Scienmag

Share12Tweet7Share2ShareShareShare1

Related Posts

Ficus Lyrata Bark: A Remedy for Fatty Liver

August 26, 2025

Predicting Therapy Outcomes for EGFR-Mutated NSCLC Patients

August 26, 2025

Revolutionizing Nepal’s Health: Past Challenges and Innovations

August 26, 2025

Seralutinib Shows Promise for Adult Pulmonary Hypertension

August 26, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    148 shares
    Share 59 Tweet 37
  • Molecules in Focus: Capturing the Timeless Dance of Particles

    142 shares
    Share 57 Tweet 36
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    115 shares
    Share 46 Tweet 29
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    81 shares
    Share 32 Tweet 20

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Ficus Lyrata Bark: A Remedy for Fatty Liver

Predicting Therapy Outcomes for EGFR-Mutated NSCLC Patients

Revolutionizing Nepal’s Health: Past Challenges and Innovations

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.