• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Study models Tsunami Risk for Florida and Cuba

Bioengineer by Bioengineer
December 14, 2016
in Science News
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Credit: Eberli & Schnyder – UM Rosensitel School of Marine and Atmospheric Science

MIAMI — While the Caribbean is not thought to be at risk for tsunamis, a new study by researchers at the University of Miami (UM) Rosenstiel School of Marine and Atmospheric Science indicates that large submarine landslides on the slopes of the Great Bahama Bank have generated tsunamis in the past and could potentially again in the future.

"Our study calls attention to the possibility that submarine landslides can trigger tsunami waves," said UM Rosenstiel School Ph.D. student Jara Schnyder, the lead author of the study. "The short distance from the slope failures to the coastlines of Florida and Cuba makes potential tsunamis low-probability but high-impact events that could be dangerous."

The team identified margin collapses and submarine landslides along the slopes of the western Great Bahama Bank–the largest of the carbonate platforms that make up the Bahamas archipelago–using multibeam bathymetry and seismic reflection data. These landslides are several kilometers long and their landslide mass can slide up to 20 kilometers (12 miles) into the basin.

An incipient failure scar of nearly 100 kilometers (70 miles) length was identified as a potential future landslide, which could be triggered by an earthquake that occasionally occur off the coast of Cuba.

Using the mathematical models commonly used to evaluate tsunami potential in the U.S., the researchers then simulated the tsunami waves for multiple scenarios of submarine landslides originating off the Great Bahama Bank to find that submarine landslides and margin collapses in the region could generate dangerous ocean currents and possibly hazardous tsunami waves several meters high along the east coast of Florida and northern Cuba.

"Residents in these areas should be aware that tsunamis do not necessarily have to be created by large earthquakes, but can also be generated by submarine landslides that can be triggered by smaller earthquakes," said UM Rosenstiel School Professor of Marine Geosciences Gregor Eberli, senior author of the study.

The study, titled "Tsunamis caused by submarine slope failures along western Great Bahama Bank," was published in the Nov. 4 issue of the journal Scientific Reports. The paper's co-authors include: Jara S.D. Schnyder, Gregor P. Eberli of the CSL-Miami, James T. Kirby, Fengyan Shi, and Babak Tehranirad of the University of Delaware, Thierry Mulder and Emmanuelle Ducassou of the Université de Bordeaux in France, and Dierk Hebbeln and Paul Wintersteller of the University of Bremen in Germany.

###

Funding was provided by the industrial associates of the CSL-Center for Carbonate Research at the University of Miami.

About the University of Miami's Rosenstiel School

The University of Miami is one of the largest private research institutions in the southeastern United States. The University's mission is to provide quality education, attract and retain outstanding students, support the faculty and their research, and build an endowment for University initiatives. Founded in the 1940's, the Rosenstiel School of Marine & Atmospheric Science has grown into one of the world's premier marine and atmospheric research institutions. Offering dynamic interdisciplinary academics, the Rosenstiel School is dedicated to helping communities to better understand the planet, participating in the establishment of environmental policies, and aiding in the improvement of society and quality of life. For more information, visit: http://www.rsmas.miami.edu.

Media Contact

Diana Udel
[email protected]
305-421-4704
@UMiamiRSMAS

http://www.rsmas.miami.edu

############

Story Source: Materials provided by Scienmag

Share12Tweet8Share2ShareShareShare2

Related Posts

Decoding Prostate Cancer Origins via snFLARE-seq, mxFRIZNGRND

February 7, 2026

Digital Health Perspectives from Baltic Sea Experts

February 7, 2026

Florida Cane Toad: Complex Spread and Selective Evolution

February 7, 2026

Exploring Decision-Making in Dementia Caregivers’ Mobility

February 7, 2026
Please login to join discussion

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Decoding Prostate Cancer Origins via snFLARE-seq, mxFRIZNGRND

Digital Health Perspectives from Baltic Sea Experts

Florida Cane Toad: Complex Spread and Selective Evolution

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.