• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

High-throughput screening for Weyl semimetals with S4 symmetry

Bioengineer by Bioengineer
February 23, 2021
in Chemistry
Reading Time: 2 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: @Science China Press

Using the symmetries of the systems, people can define various topological invariants to describe different topological states. The topological materials can be accurately discovered by calculating the topological invariants. Recently, researchers found that irreducible representations and compatibility relationships can be used to determine whether a material is topological nontrivial/trivial insulator (satisfying the compatibility relations) or topological semimetal (violating the compatibility relations), which leads to a large number of topological materials predicted by theoretical calculations. However, Weyl semimetals go beyond this paradigm because the existence of Weyl fermions does not need any symmetry protections (except for lattice translation symmetries). At present, people usually take a very dense grid in the three dimensional Brillouin zone to search for Weyl fermions with zero band gap. Due to the large amount of computation required, this method is very inefficient. Therefore, it cannot be used to high-throughput search for Wey fermions. Considering the huge potential applications of Weyl semimetals, it is urgent to design a new algorithm or define a new topological invariant to search Weyl fermions accurately and quickly.

In a recent work published in Science Bulletin, Gao et al. proposed a new topological invariant χ in systems with S4 symmetry, which can be used to diagnose the existence of Weyl fermions effectively. χ is defined as the integral of Berry curvature on the orange plane (Surface S) in Fig. 1, and can be calculated simply by using the one dimensional Wilson-loop method. In addition, for magnetic systems, the nonzero χ can be revealed by the irreducible representations of occupied states on S4 invariant k-points. Thus it greatly reduces the calculation cost for searching for Weyl fermions. It is worth noting that this new invariant χ works for both magnetic and nonmagnetic systems.

By applying this method to high-throughput screening in the first-principles calculations, the authors predicted a lot of new magnetic and nonmagnetic Weyl semimetals. The experimental observations have shown that these newly discovered Weyl semimetals possess many unique properties, such as magnetoresistance, superconductivity, and spin glassy states etc. These materials provide realistic platforms for future experimental study of the interplay between Weyl fermions and other exotic states.

###

Jiacheng Gao, Yuting Qian, Simin Nie, Zhong Fang, Hongming Weng, Zhijun Wang. High-throughput screening for Weyl Semimetals with S4 Symmetry. Science Bulletin, 2021, doi: 10.1016/j.scib.2020.12.028
https://www.sciencedirect.com/science/article/pii/S2095927320307738

Media Contact
Yan Bei
[email protected]

Original Source

http://www.sciencedirect.com/science/article/pii/S2095927320307738

Related Journal Article

http://dx.doi.org/10.1016/j.scib.2020.12.028

Tags: Chemistry/Physics/Materials Sciences
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Breakthrough in Environmental Cleanup: Scientists Develop Solar-Activated Biochar for Faster Remediation

February 7, 2026
blank

Cutting Costs: Making Hydrogen Fuel Cells More Affordable

February 6, 2026

Scientists Develop Hand-Held “Levitating” Time Crystals

February 6, 2026

Observing a Key Green-Energy Catalyst Dissolve Atom by Atom

February 6, 2026
Please login to join discussion

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Evaluating Pediatric Emergency Care Quality in Ethiopia

TPMT Expression Predictions Linked to Azathioprine Side Effects

Improving Dementia Care with Enhanced Activity Kits

Subscribe to Blog via Email

Success! An email was just sent to confirm your subscription. Please find the email now and click 'Confirm' to start subscribing.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.