• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, August 26, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

University of Minnesota research shows people can control a robotic arm with only their minds

Bioengineer by Bioengineer
December 14, 2016
in Science News
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: College of Science and Engineering

Researchers at the University of Minnesota have made a major breakthrough that allows people to control a robotic arm using only their minds. The research has the potential to help millions of people who are paralyzed or have neurodegenerative diseases.

The study is published online today in Scientific Reports, a Nature research journal.

"This is the first time in the world that people can operate a robotic arm to reach and grasp objects in a complex 3D environment using only their thoughts without a brain implant," said Bin He, a University of Minnesota biomedical engineering professor and lead researcher on the study. "Just by imagining moving their arms, they were able to move the robotic arm."

The noninvasive technique, called electroencephalography (EEG) based brain-computer interface, records weak electrical activity of the subjects' brain through a specialized, high-tech EEG cap fitted with 64 electrodes and converts the "thoughts" into action by advanced signal processing and machine learning.

Eight healthy human subjects completed the experimental sessions of the study wearing the EEG cap. Subjects gradually learned to imagine moving their own arms without actually moving them to control a robotic arm in 3D space. They started from learning to control a virtual cursor on computer screen and then learned to control a robotic arm to reach and grasp objects in fixed locations on a table. Eventually, they were able to move the robotic arm to reach and grasp objects in random locations on a table and move objects from the table to a three-layer shelf by only thinking about these movements.

All eight subjects could control a robotic arm to pick up objects in fixed locations with an average success rate above 80 percent and move objects from the table onto the shelf with an average success rate above 70 percent.

"This is exciting as all subjects accomplished the tasks using a completely noninvasive technique. We see a big potential for this research to help people who are paralyzed or have neurodegenerative diseases to become more independent without a need for surgical implants," He said.

The researchers said the brain-computer interface technology works due to the geography of the motor cortex–the area of the cerebrum that governs movement. When humans move, or think about a movement, neurons in the motor cortex produce tiny electric currents. Thinking about a different movement activates a new assortment of neurons, a phenomenon confirmed by cross-validation using functional MRI in He's previous study. Sorting out these assortments using advanced signal processing laid the groundwork for the brain-computer interface used by the University of Minnesota researchers, He said.

The robotic arm research builds upon He's research published three years ago in which subjects were able to fly a small quadcopter using the noninvasive EEG technology. The research gained international media attention.

"Three years ago, we weren't sure moving a more complex robotic arm to grasp and move objects using this brain-computer interface technology could even be achieved," He said. "We're happily surprised that it worked with a high success rate and in a group of people."

He anticipates the next step of his research will be to further develop this brain-computer interface technology realizing a brain-controlled robotic prosthetic limb attached to a person's body or examine how this technology could work with someone who has had a stroke or is paralyzed.

###

In addition to Professor He, who also serves as director of the University of Minnesota Institute for Engineering in Medicine, the research team includes biomedical engineering postdoctoral researcher Jianjun Meng (first author); biomedical engineering graduate student Bryan Baxter; Institute for Engineering in Medicine staff member Angeliki Bekyo; and biomedical engineering undergraduate students Shuying Zhang and Jaron Olsoe. The researchers are affiliated with the University of Minnesota College of Science and Engineering and the Medical School.

The University of Minnesota study was funded by the National Science Foundation (NSF), the National Center for Complementary and Integrative Health, National Institute of Biomedical Imaging and Bioengineering, and National Institute of Neurological Disorders and Stroke of the National Institutes of Health (NIH), and the University of Minnesota's MnDRIVE (Minnesota's Discovery, Research and InnoVation Economy) Initiative funded by the Minnesota Legislature.

To read the full research paper, entitled "Noninvasive Electroencephalogram Based Control of a Robotic Arm for Reach and Grasp Tasks," visit the Nature Scientific Reports website.

Media Contact

Lacey Nygard
[email protected]
612-625-0552
@UMNews

http://www.umn.edu

############

Story Source: Materials provided by Scienmag

Share12Tweet7Share2ShareShareShare1

Related Posts

Ficus Lyrata Bark: A Remedy for Fatty Liver

August 26, 2025

Predicting Therapy Outcomes for EGFR-Mutated NSCLC Patients

August 26, 2025

Revolutionizing Nepal’s Health: Past Challenges and Innovations

August 26, 2025

Seralutinib Shows Promise for Adult Pulmonary Hypertension

August 26, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    148 shares
    Share 59 Tweet 37
  • Molecules in Focus: Capturing the Timeless Dance of Particles

    142 shares
    Share 57 Tweet 36
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    115 shares
    Share 46 Tweet 29
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    81 shares
    Share 32 Tweet 20

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Ficus Lyrata Bark: A Remedy for Fatty Liver

Predicting Therapy Outcomes for EGFR-Mutated NSCLC Patients

Revolutionizing Nepal’s Health: Past Challenges and Innovations

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.