• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, October 10, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Ultimately, beneficial fungi could be more effective than pesticides against nematodes

Bioengineer by Bioengineer
February 4, 2021
in Science News
Reading Time: 2 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: J.O. Becker

Over the past 30 years, the use of soil fumigants and nematicides used to protect cole crops, such as broccoli and Brussel sprouts, against cyst nematode pathogens in coastal California fields has decreased dramatically. A survey of field samples in 2016 indicated the nematode population has also decreased, suggesting the existence of a natural cyst nematode controlling process in these fields.

Thanks to California’s pesticide-use reporting program, nematologists have been able to follow the amounts of fumigants and nematicides used to control cyst nematodes over the past three decades.
“Application of these pesticides steadily declined until they were completely eliminated in 2014 while, for example, broccoli yields continued to increase each year,” said Ole Becker, a scientist with the Department of Nematology at the University of California.

In a study of 152 fields, Borneman, Becker and colleagues detected cyst nematodes in about 38% of them. Only a few of these fields had enough nematodes to potentially damage the crops. This showed that growers had likely reduced their usage of nematicides because of a natural decline in the nematode populations.

To identify the cause of this natural decline, Borneman, Becker and colleagues used cyst nematodes as a bait and found that a diverse population of fungi were likely killing the nematodes. The most abundant genus was Hyalorbilia, which contains species previously described as effective parasites of cyst and root-knot nematodes.

“The results from our baiting analysis combined with advanced molecular tools gave us a detailed depiction of the possible nematode-parasitizing fungi in these soils, which then provided a plausible explanation for this dramatic decrease in pesticide use,” said Borneman.

Their research demonstrates the usefulness of monitoring plant-parasitic nematode density before using nematicides and increases the awareness of beneficial fungi in crop protection. These fungi might be considered as possible biological control agents for nematodes.

###

To learn more, read “Detection of Nematophagous Fungi from Heterodera schachtii Females Using a Baiting Experiment with Soils Cropped to Brassica Species from California’s Central Coast” published in the January issue of PhytoFrontiers.

Media Contact
Ashley Bergman Carlin
[email protected]

Related Journal Article

http://dx.doi.org/10.1094/PHYTOFR-07-20-0009-R

Tags: Agricultural Production/EconomicsAgricultureBiologyEcology/EnvironmentFertilizers/Pest ManagementFood/Food ScienceMicrobiologyParasitologyPlant Sciences
Share13Tweet8Share2ShareShareShare2

Related Posts

EVG7 Antibiotic Stops C. difficile, Spares Gut Bacteria

October 10, 2025

Revolutionizing Blood Cancer Treatment: Reprogramming Cancer Cell Death to Activate the Immune System

October 10, 2025

LED Light Targets and Destroys Cancer Cells While Protecting Healthy Tissue

October 10, 2025

Upcoming Release: The Journal of Nuclear Medicine Ahead-of-Print Highlights – October 10, 2025

October 10, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1196 shares
    Share 478 Tweet 299
  • New Study Reveals the Science Behind Exercise and Weight Loss

    102 shares
    Share 41 Tweet 26
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    96 shares
    Share 38 Tweet 24
  • Revolutionizing Optimization: Deep Learning for Complex Systems

    83 shares
    Share 33 Tweet 21

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

EVG7 Antibiotic Stops C. difficile, Spares Gut Bacteria

Revolutionizing Blood Cancer Treatment: Reprogramming Cancer Cell Death to Activate the Immune System

LED Light Targets and Destroys Cancer Cells While Protecting Healthy Tissue

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 63 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.