• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Researchers identify “rescue” mechanism that helps cells survive malfunctioning split

Bioengineer by Bioengineer
February 4, 2021
in Biology
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Masashi Yukawa & Takashi Toda, Hiroshima University

Cells replicate their genetic material and divide into two identical clones, perpetuating life — until they don’t. Some cells pause — or are intentionally made to pause — in the process. When the cell resumes division after such a pause, a displaced nucleus — an essential part of cell survival — can become caught in the fissure, splitting violently and killing both cells. But that is not always the case; some mutant cells can recover by pushing their nucleus to safety. Researchers from Hiroshima University in Japan are starting to understand how in the first step toward potential cell death rescue applications.

The results were published on Jan. 22 in iScience, a Cell Press journal.

The researchers examined fission yeast, a common model organism used for studying the molecular mechanisms underpinning the cell cycle. These rod-shaped cells provide an ideal view of each phase of mitosis, the process by which the cell duplicates and divides. In this process, the genetic-containing nucleus migrates to the center of the cell, dissolves its protective envelope, replicates and reassembles as two on each side of the cell. The center of the cell then pinches apart.

“Proper nuclear positioning is essential for the execution of a wide range of cellular processes in eukaryotic cells, which contain a nucleus bound in a membrane,” said first author Masashi Yukawa, assistant professor in the Hiroshima Research Center for Healthy Aging and the Graduate School of Integrated Sciences for Life, Hiroshima University. “Yet how the nucleus is retained in the center of the cell during mitosis remains elusive.”

Researchers can use drugs to pause this process and study it further or to help halt unhealthy cell division in various diseases. The nucleus, not yet divided, remains in the center of the cell.

“We found several fission yeast mutants that arrest in mitosis all displace the nucleus towards one end of the cell,” Yukawa said. “Our questions are how and why these mutant cells translocate their nucleus from the cell center during mitosis.”

They found that microfilaments made of a protein called actin appear to play a role. These cable-like filaments act as arms, pushing the nucleus to the center of the cell.

“During prolonged mitotic arrest, the forces of the actin cables become unbalanced, pushing the nucleus to one side,” Yukawa said.

The researchers also found that the mitosis-induced ring that constricts the original cell into two helps push an off-balanced nucleus further to one side. When the cell splits, the nucleus remains intact.

“Eukaryotic cells may have a novel mitotic surveillance mechanism that involves an actin-mediated nuclear movement to escape from disastrous mitotic catastrophe,” Yukawa said. “We will continue to elucidate the mechanism by which cells keep the correct position of their nucleus during mitosis.

###

Yasuhiro Teratani and Takashi Toda, both with the Laboratory of Molecular and Chemical Cell Biology in the Graduate School of Integrated Sciences for Life at Hiroshima University, also authored this work. Toda is also affiliated with the Hiroshima Research Center for Healthy Aging at Hiroshima University.

The Japan Society for the Promotion of Science supported this work.

About Hiroshima University

Since its foundation in 1949, Hiroshima University has striven to become one of the most prominent and comprehensive universities in Japan for the promotion and development of scholarship and education. Consisting of 12 schools for undergraduate level and 4 graduate schools, ranging from natural sciences to humanities and social sciences, the university has grown into one of the most distinguished comprehensive research universities in Japan.

English website: https://www.hiroshima-u.ac.jp/en

Media Contact
Norifumi Miyokawa
[email protected]

Related Journal Article

http://dx.doi.org/10.1016/j.isci.2020.102031

Tags: BiologyCell BiologyGenesGeneticsMicrobiologyMolecular Biology
Share12Tweet8Share2ShareShareShare2

Related Posts

Florida Cane Toad: Complex Spread and Selective Evolution

Florida Cane Toad: Complex Spread and Selective Evolution

February 7, 2026
New Study Uncovers Mechanism Behind Burn Pit Particulate Matter–Induced Lung Inflammation

New Study Uncovers Mechanism Behind Burn Pit Particulate Matter–Induced Lung Inflammation

February 6, 2026

DeepBlastoid: Advancing Automated and Efficient Evaluation of Human Blastoids with Deep Learning

February 6, 2026

Navigating the Gut: The Role of Formic Acid in the Microbiome

February 6, 2026
Please login to join discussion

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Inflammasome Protein ASC Drives Pancreatic Cancer Metabolism

Phage-Antibiotic Combo Beats Resistant Peritoneal Infection

Boosting Remote Healthcare: Stepped-Wedge Trial Insights

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.