• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, October 1, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS

Bioengineer cells to fight diabetes

Bioengineer by Bioengineer
February 24, 2013
in NEWS
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
"This would be a win-win situation for diabetics — they would have more insulin-producing beta cells and there would be fewer glucagon-producing alpha cells," says lead author Klaus H. Kaestner, Ph.D., professor of Genetics and member of the Institute of Diabetes, Obesity and Metabolism, Perelman School of Medicine, University of Pennsylvania. Type 2 diabetics not only lack insulin, but they also produce too much glucagon.
 
Both type 1 and type 2 diabetes are caused by insufficient numbers of insulin-producing beta cells. In theory, transplantation of healthy beta cells — for type 1 diabetics in combination with immunosuppression to control autoimmunity — should halt the disease, yet researchers have not yet been able to generate these cells in the lab at high efficiency, whether from embryonic stem cells or by reprogramming mature cell types.
 
Alpha cells are another type of endocrine cell in the pancreas. They are responsible for synthesizing and secreting the peptide hormone glucagon, which elevates glucose levels in the blood.
 
"We treated human islet cells with a chemical that inhibits a protein that puts methyl chemical groups on histones, which — among many other effects — leads to removal of some histone modifications that affect gene expression," says Kaestner. "We then found a high frequency of alpha cells that expressed beta-cell markers, and even produced some insulin, after drug treatment.
 
Histones are protein complexes around which DNA strands are wrapped in a cell's nucleus.
 
The team discovered that many genes in alpha cells are marked by both activating- and repressing-histone modifications. This included many genes important in beta-cell function. In one state, when a certain gene is turned off, the gene can be readily activated by removing a modification that represses the histone.
 
"To some extent human alpha cells appear to be in a 'plastic' epigenetic state," explains Kaestner. "We reasoned we might use that to reprogram alpha cells towards the beta-cell phenotype to produce these much-needed insulin-producing cells."
 
Co-authors are Nuria C. Bramswig, Logan Everett, Jonathan Schug, Chengyang Liu, Yanping Luo, and Ali Naji, all from Penn, and Markus Grompe, Craig Dorrell, and Philip R. Streeter from the Oregon Health & Science University. The Oregon group developed a panel of human endocrine cell type-specific antibodies for cell sorting.
 
The research was supported by the National Institute of Diabetes and Digestive and Kidney Diseases (U01 DK070430, U42 RR006042, U01DK089529, R01DK088383, U01DK089569) and by the Beckman Research Center/NIDDK/Integrated Islet Distribution Program (10028044).

Story Source:

The above story is reprinted from materials provided by Perelman School of Medicine at the University of Pennsylvania.

Tags: BIOENGINEERdiabete
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Laser Sintering 3D-Prints Silver Electronics in Space

October 1, 2025

Assessing Group Support for Parents of Autistic Teens

October 1, 2025

Can We Differentiate Distal Femur Variations from Lesions?

October 1, 2025

Multilocus Gene Deletion and Conversion at Y-STR

October 1, 2025
Please login to join discussion

POPULAR NEWS

  • New Study Reveals the Science Behind Exercise and Weight Loss

    New Study Reveals the Science Behind Exercise and Weight Loss

    89 shares
    Share 36 Tweet 22
  • Physicists Develop Visible Time Crystal for the First Time

    74 shares
    Share 30 Tweet 19
  • How Donor Human Milk Storage Impacts Gut Health in Preemies

    62 shares
    Share 25 Tweet 16
  • Scientists Discover and Synthesize Active Compound in Magic Mushrooms Again

    57 shares
    Share 23 Tweet 14

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Laser Sintering 3D-Prints Silver Electronics in Space

Assessing Group Support for Parents of Autistic Teens

Can We Differentiate Distal Femur Variations from Lesions?

Subscribe to Blog via Email

Success! An email was just sent to confirm your subscription. Please find the email now and click 'Confirm' to start subscribing.

Join 59 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.