• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, August 4, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Change of course on the journey to the island of stability

Bioengineer by Bioengineer
January 26, 2021
in Chemistry
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Center of the island of stability is not located at element 114 — Heavier elements will move into the spotlight

IMAGE

Credit: Photo: A. Såmark-Roth, Lund University

An international research team succeeded in gaining new insights into the artificially produced superheavy element flerovium, element 114, at the accelerator facilities of the GSI Helmholtzzentrum für Schwerionenforschung in Darmstadt, Germany. Under the leadership of Lund University in Sweden and with significant participation of Johannes Gutenberg University Mainz (JGU) as well as the Helmholtz Institute Mainz (HIM) in Germany and other partners, flerovium was produced and investigated to determine whether it has a closed proton shell. The results suggest that, contrary to expectations, flerovium is not a so-called “magic nucleus”. The results were published in the journal Physical Review Letters.

In the late 1960s, Sven-Gösta Nilsson, then a physics professor at Lund University, and others formulated a theory about the possible existence of still unknown superheavy elements. In the meantime, such elements have been created and many predictions have been confirmed. The discovery of the six new elements 107 to 112 was achieved at GSI in Darmstadt, and further ones up to element 118 are now known as well. Strongly increased half-lives for the superheavy elements due to a “magic” combination of protons and neutrons were also predicted. This occurs when the shells in the nucleus, each holding a certain number of protons and neutrons, are completely filled. “Flerovium, element 114, was also predicted to have such a completed, ‘magic’ proton shell structure. If this were true, flerovium would lie at the center of the so-called ‘island of stability’, an area of the chart of nuclides where the superheavy elements should have particularly long lifetimes due to the shell closures,” explains Professor Dirk Rudolph of Lund University, who is the spokesperson of the international experiment.

Nilsson’s theories inspired the international collaboration led by the Lund group to investigate whether flerovium nuclei indeed exhibit the predicted magical properties. Their experiments, performed at the UNILAC accelerator at GSI in Darmstadt in the framework of the FAIR Phase 0 experimental program, lasted 18 days. Every second, four trillion calcium-48 nuclei with 20 protons were accelerated to ten percent of the speed of light. They irradiated a thin foil containing rare plutonium-244 with 94 protons to produce atomic nuclei of flerovium, which has 114 protons, by nuclear fusion. This so-called target was produced at the Department of Chemistry at JGU, using, plutonium provided, among others, by the Lawrence Livermore National Laboratory, USA. Strong magnets of the GSI recoil separator TASCA separated the flerovium nuclei from the intense calcium ion beam; subsequently they were registered in a detector setup specifically developed in Lund for this experiment.

The detector measured the radioactive decay of 30 flerovium nuclei — i.e., the emission of nuclear fragments of flerovium — with high efficiency and accuracy. By precisely analyzing these fragments and their emission times, the team was able to determine unusual decay channels of flerovium nuclei that could not be reconciled with its originally predicted “magical” properties. “Our study shows that element 114 is no more stable than others in its vicinity. This is a very important piece of the puzzle in the continued search for the center of the coveted island of stability,” said Professor Christoph Düllmann, professor of nuclear chemistry at JGU and head of the research groups at GSI and HIM.

The new results will be of great benefit to science. Instead of continuing to search for the center of the island of stability in the region of element 114, even heavier ones like the as yet undiscovered element 120, will now move into the spotlight.

###

Media Contact
Dr. Ingo Peter
[email protected]

Original Source

https://www.gsi.de/en/start/news/details/2021/01/26/flerovium0.htm

Related Journal Article

http://dx.doi.org/10.1103/PhysRevLett.126.032503

Tags: Chemistry/Physics/Materials SciencesNuclear Physics
Share12Tweet8Share2ShareShareShare2

Related Posts

Catalytic C(sp2) Expansion of Alkylboranes

Catalytic C(sp2) Expansion of Alkylboranes

August 4, 2025
Metal–Sulfur Sites Boost MOF Hydrogenation Catalysis

Metal–Sulfur Sites Boost MOF Hydrogenation Catalysis

August 3, 2025

Bright Excitons Enable Optical Spin State Control

August 3, 2025

Flame Synthesis Creates Custom High-Entropy Metal Nanomaterials

August 2, 2025
Please login to join discussion

POPULAR NEWS

  • Blind to the Burn

    Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    60 shares
    Share 24 Tweet 15
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    57 shares
    Share 23 Tweet 14
  • Predicting Colorectal Cancer Using Lifestyle Factors

    45 shares
    Share 18 Tweet 11
  • Dr. Miriam Merad Honored with French Knighthood for Groundbreaking Contributions to Science and Medicine

    46 shares
    Share 18 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

AI Models Reveal Microplastics in Neuse River Basin

Gratitude vs. Behavioral Activation in Breast Cancer

Nitric Oxide Drives Metabolic Shift in Macrophages

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.