• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, November 4, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Diffractive networks light the way for optical image classification

Bioengineer by Bioengineer
January 14, 2021
in Chemistry
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: by Md Sadman Sakib Rahman, Jingxi Li, Deniz Mengu, Yair Rivenson and Aydogan Ozcan

Recently there has been a reemergence of interest in optical computing platforms for artificial intelligence-related applications. Optics/photonics is ideally suited for realizing neural network models because of the high speed, large bandwidth and high interconnectivity of optical information processing. Introduced by UCLA researchers, Diffractive Deep Neural Networks (D2NNs) constitute such an optical computing framework, comprising successive transmissive and/or reflective diffractive surfaces that can process input information through light-matter interaction. These surfaces are designed using standard deep learning techniques in a computer, which are then fabricated and assembled to build a physical optical network. Through experiments performed at terahertz wavelengths, the capability of D2NNs in classifying objects all-optically was demonstrated. In addition to object classification, the success of D2NNs in performing miscellaneous optical design and computation tasks, including e.g., spectral filtering, spectral information encoding, and optical pulse shaping have also been demonstrated.

In their latest paper published in Light: Science & Applications, UCLA team reports a leapfrog advance in D2NN-based image classification accuracy through ensemble learning. The key ingredient behind the success of their approach can be intuitively understood through the experiment of Sir Francis Galton (1822-1911), an English philosopher and statistician, who, while visiting a livestock fair, asked the participants to guess the weight of an ox. None of the hundreds of participants succeeded in guessing the weight. But to his astonishment, Galton found that the median of all the guesses came quite close – 1207 pounds, and was accurate within 1% of the true weight of 1198 pounds. This experiment reveals the power of combining many predictions in order to obtain a much more accurate prediction. Ensemble learning manifests this idea in machine learning, where an improved predictive performance is attained by combining multiple models.

In their scheme, UCLA researchers reported an ensemble formed by multiple D2NNs operating in parallel, each of which is individually trained and diversified by optically filtering their inputs using a variety of filters. 1252 D2NNs, uniquely designed in this manner, formed the initial pool of networks, which was then pruned using an iterative pruning algorithm, so that the resulting physical ensemble is not prohibitively large. The final prediction comes from a weighted average of the decisions from all the constituent D2NNs in an ensemble. The researchers evaluated the performance of the resulting D2NN ensembles on CIFAR-10 image dataset, which contains 60,000 natural images categorized in 10 classes and is an extensively used dataset for benchmarking various machine learning algorithms. Simulations of their designed ensemble systems revealed that diffractive optical networks can significantly benefit from the ‘wisdom of the crowd’. For example, with an ensemble of 14 individually trained D2NNs, the researchers achieved 61.21% blind testing accuracy on CIFAR-10 dataset, which is ~16% higher than the average accuracy of the individual constituent D2NNs.

This research is led by Professor Aydogan Ozcan from the Electrical and Computer Engineering Department at UCLA, USA. This significantly improved inference and generalization performance achieved by D2NN ensembles marks a major advancement in closing the gap between optical neural networks and their digital counterparts. Together with the advances in the fabrication and assembly of nanoscale optical systems, the presented framework bears the promise for miniaturized, ultrafast machine learning solutions for a variety of applications, for example, all-optical object classification, diffraction-based optical computing hardware, and computational imaging tasks.

###

Media Contact
Aydogan Ozcan
[email protected]

Related Journal Article

http://dx.doi.org/10.1038/s41377-020-00446-w

Tags: Chemistry/Physics/Materials SciencesOptics
Share12Tweet8Share2ShareShareShare2

Related Posts

New Lightning Forecasting Technology Aims to Safeguard Future Aircraft

New Lightning Forecasting Technology Aims to Safeguard Future Aircraft

November 4, 2025
New Research Reveals Light’s Power to Reshape Atom-Thin Semiconductors for Advanced Optical Devices

New Research Reveals Light’s Power to Reshape Atom-Thin Semiconductors for Advanced Optical Devices

November 4, 2025

Carving Innovation: Novel Method Crafts Advanced Materials from Simple Plastics

November 4, 2025

Parkinson’s Mouse Model Reveals How Noise Impairs Movement

November 4, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1298 shares
    Share 518 Tweet 324
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    313 shares
    Share 125 Tweet 78
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    205 shares
    Share 82 Tweet 51
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    138 shares
    Share 55 Tweet 35

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Risk Assessment Models Reduce Venous Thromboembolism Prophylaxis

Unveiling Wheat’s Defense Against WSMV: A Transcriptomic Study

Unveiling Wheat’s Defense Against WSMV: A Transcriptomic Study

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 67 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.