• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Drugs from nature: Big effects of multiple compounds in small amounts

Bioengineer by Bioengineer
December 13, 2016
in Science News
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

FRANKFURT. Nature often produces a whole weaponry of active ingredients to ensure it is well prepared for any scenario that might occur. Pharmacists and medical experts have meanwhile learnt from this, since pathogens develop resistance more easily to single active drugs than to a combination therapy. The research group led by Professor Helge Bode has now discovered a whole class of new peptides with which bacteria are able to kill insect larvae.

The peptides, known as rhabdopeptide/xenortide peptides (RXPs), are produced exclusively by the bacterial genera Photorhabdus and Xenorhabdus. They live in symbiosis with nematodes, together with which they infect and kill insect larvae. Since many RXPs are toxic for eukaryotic cells (including insect cells) and are produced by many different strains of Xenorhabdus and Photorhabdus, they presumably play a very important role during infection.

One single strain of bacteria can produce up to 40 RXP derivates. As the research group, which is led by Professor Helge B. Bode, Merck Endowed Professor of Molecular Biotechnology at Goethe University Frankfurt, reported in the latest issue of Nature Chemistry, it was surprising to see that only a maximum of four enzymes is required for their production. Bode compares them with classic chemical catalysts for the formation of polymer chains. His group has successfully solved the mechanisms responsible for the production of the unusually high diversity of RXPs.

Why do the bacteria produce a whole library of RXPs instead of single compounds? The researchers explain that the bacteria cannot control into which insect larvae they are delivered by their nematode host. However, in order to survive they must be able to kill any insect quickly and efficiently and direct the mixture of substances at perhaps completely different target sites in the insect cells at the same time. "Imagine shooting with a shotgun", explains Bode, "even if you're a poor marksman, there's a good chance that the spray of bullets will ensure that at least one hits the target!"

Future work will focus on detecting the exact mode of action of the RXPs and identifying, by means of structure-activity analysis, particularly potent derivates, which can then be produced biotechnologically or chemically and perhaps used as insecticides.

###

A picture can be downloaded from: http://www.uni-frankfurt.de/64290802

Media Contact

Prof. Helge Bode
[email protected]
@goetheuni

http://www.uni-frankfurt.de

############

Story Source: Materials provided by Scienmag

Share12Tweet8Share2ShareShareShare2

Related Posts

Boosting Remote Healthcare: Stepped-Wedge Trial Insights

February 7, 2026

Barriers and Boosters of Seniors’ Physical Activity in Karachi

February 7, 2026

Evaluating Pediatric Emergency Care Quality in Ethiopia

February 7, 2026

TPMT Expression Predictions Linked to Azathioprine Side Effects

February 7, 2026
Please login to join discussion

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Boosting Remote Healthcare: Stepped-Wedge Trial Insights

Barriers and Boosters of Seniors’ Physical Activity in Karachi

Evaluating Pediatric Emergency Care Quality in Ethiopia

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.