• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, August 27, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Electrically switchable qubit can tune between storage and fast calculation modes

Bioengineer by Bioengineer
January 11, 2021
in Chemistry
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

A tiny germanium; silicon nanowire takes a big step towards a scalable quantum computer

IMAGE

Credit: Image: University of Basel, Department of Physics

To perform calculations, quantum computers need qubits to act as elementary building blocks that process and store information. Now, physicists have produced a new type of qubit that can be switched from a stable idle mode to a fast calculation mode. The concept would also allow a large number of qubits to be combined into a powerful quantum computer, as researchers from the University of Basel and TU Eindhoven have reported in the journal Nature Nanotechnology.

Compared with conventional bits, quantum bits (qubits) are much more fragile and can lose their information content very quickly. The challenge for quantum computing is therefore to keep the sensitive qubits stable over a prolonged period of time, while at the same time finding ways to perform rapid quantum operations. Now, physicists from the University of Basel and TU Eindhoven have developed a switchable qubit that should allow quantum computers to do both.

The new type of qubit has a stable but slow state that is suitable for storing quantum information. However, the researchers were also able to switch the qubit into a much faster but less stable manipulation mode by applying an electrical voltage. In this state, the qubits can be used to process information quickly.

Selective coupling of individual spins

In their experiment, the researchers created the qubits in the form of “hole spins”. These are formed when an electron is deliberately removed from a semiconductor, and the resulting hole has a spin that can adopt two states, up and down – analogous to the values 0 and 1 in classical bits. In the new type of qubit, these spins can be selectively coupled – via a photon, for example – to other spins by tuning their resonant frequencies.

This capability is vital, since the construction of a powerful quantum computer requires the ability to selectively control and interconnect many individual qubits. Scalability is particularly necessary to reduce the error rate in quantum calculations.

Ultrafast spin manipulation

The researchers were also able to use the electrical switch to manipulate the spin qubits at record speed. “The spin can be coherently flipped from up to down in as little as a nanosecond,” says project leader Professor Dominik Zumbühl from the Department of Physics at the University of Basel. “That would allow up to a billion switches per second. Spin qubit technology is therefore already approaching the clock speeds of today’s conventional computers.”

For their experiments, the researchers used a semiconductor nanowire made of silicon and germanium. Produced at TU Eindhoven, the wire has a tiny diameter of about 20 nanometers. As the qubit is therefore also extremely small, it should in principle be possible to incorporate millions or even billions of these qubits onto a chip.

###

Media Contact
Reto Caluori
[email protected]

Related Journal Article

http://dx.doi.org/10.1038/s41565-020-00828-6

Tags: Chemistry/Physics/Materials SciencesComputer ScienceNanotechnology/MicromachinesTechnology/Engineering/Computer Science
Share12Tweet8Share2ShareShareShare2

Related Posts

Breakthrough in Origin of Life: Chemists Reveal How RNA Could Have Begun Synthesizing Proteins on Early Earth

Breakthrough in Origin of Life: Chemists Reveal How RNA Could Have Begun Synthesizing Proteins on Early Earth

August 27, 2025
AI-Driven Materials Map Accelerates Breakthroughs in Materials Discovery

AI-Driven Materials Map Accelerates Breakthroughs in Materials Discovery

August 27, 2025

Liverpool’s Professor Matt Rosseinsky Honored with Royal Medal for Groundbreaking Materials Science Research

August 27, 2025

Innovative Material Design Enables Magnetic Tunability in Quasicrystal Approximants

August 27, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    149 shares
    Share 60 Tweet 37
  • Molecules in Focus: Capturing the Timeless Dance of Particles

    142 shares
    Share 57 Tweet 36
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    115 shares
    Share 46 Tweet 29
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    82 shares
    Share 33 Tweet 21

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Exploring Eating Disorders in Bariatric Surgery Patients

Breakthrough Partial Heart Transplant Offers Hope for Congenital Heart Disease

Breakthrough in Origin of Life: Chemists Reveal How RNA Could Have Begun Synthesizing Proteins on Early Earth

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.