• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Construction of carbon-based cell-like-spheres for robust potassium anode

Bioengineer by Bioengineer
January 11, 2021
in Chemistry
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: @Science China Press

With the rapid development of smart portable electronics and electric vehicles, the consumption of lithium resource will increase dramatically and the cost of lithium-ion batteries (LIBs) may increase significantly in the future. In addition, the shortage (0.0017 wt% in the earth’s crust) and uneven crustal distribution of lithium also limit its further development and application. As potassium (2.7 wt% in the earth’s crust) have properties similar to lithium and abundant reserves. Therefore, as an alternative to LIBs, potassium ion batteries (PIBs) have become the focus of research. Potassium (2.92 V vs. standard hydrogen electrode) has a standard electrode potential closer to Li (3.04 V vs. SHE) than the standard electrode potential of Na (2.71 V vs. SHE), Mg (2.37 V vs. SHE) and Al (1.66 V vs. SHE). This means that PIBs may provide a higher energy density and working voltage. Consequently, it is of great significance to explore excellent electrode materials and study their potassium storage mechanism.

Over billions of years, biological cells evolved effectively by natural selection and resulted in the creation of a variety of organisms, and cells such as human cells that can be regarded as perfect small systems. The structure of such cells is complex yet delicate with various well-coordinated structural components; for example, the cell membrane provides access to biomaterials and can discharge metabolic waste in a timely manner. Here we propose and demonstrate that such evolution-selected cells have important implications in the synthesis of battery materials.

In a new research article published in the Beijing-based National Science Review, scientists at Hunan University, Central South University and Clemson University present a biomimetic carbon cells (BCCs) for robust potassium anode. Biomimetic carbon cells (BCCs) are composed of carbon sheets with high degree of graphitization and carbon nanotubes. Carbon nanotubes connect the inside and outside of carbon cells, providing a large number of ion channels. A large number of ion channels increase the diffusion path of ions and increase the transmission rate. The internal space possessed by the BCC provides a buffer for the volume change caused by the insertion of potassium ions into the graphite, carbon shell of the cell-like membrane can protect and support the internal materials and the overall structure, which greatly improves the cyclic stability of PIBs. The BCC-based electrodes demonstrated a superior cycling stability with a stable reversible capacity of 226 mAh g-1 after 2100 cycles at a current density of 500 mA g-1 and continuous running time of more than 15 months at a current density of 100 mA g-1. The present strategy provides a new way for the design and manufacture of new biomimetic battery materials in the future, and promotes collaborative research across multiple disciplines.

“Scientifically, we combine the biological field and the material synthesis field (biomimetic structure), and report the performance and stability of the synthesized carbon material as a potassium ion battery anode.” Prof. Bingan Lu said, “In a broader perspective, the study represents a new strategy for boosting the battery performance, and could pave the way for the next generation battery-powered applications.”

###

See the article:

Hongbo Ding, Jiang Zhou, Apparao M. Rao and Bingan Lu

Cell-like-carbon-micro-spheres for robust potassium anode

National Science Review, nwaa276, DOI: 10.1093/nsr/nwaa276

https://doi.org/10.1093/nsr/nwaa276

The National Science Review is the first comprehensive scholarly journal released in English in China that is aimed at linking the country’s rapidly advancing community of scientists with the global frontiers of science and technology. The journal also aims to shine a worldwide spotlight on scientific research advances across China.

Media Contact
Bingan Lu
[email protected]

Original Source

http://doi.org/10.1093/nsr/nwaa276

Related Journal Article

http://dx.doi.org/10.1093/nsr/nwaa276

Tags: Chemistry/Physics/Materials Sciences
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Breakthrough in Environmental Cleanup: Scientists Develop Solar-Activated Biochar for Faster Remediation

February 7, 2026
blank

Cutting Costs: Making Hydrogen Fuel Cells More Affordable

February 6, 2026

Scientists Develop Hand-Held “Levitating” Time Crystals

February 6, 2026

Observing a Key Green-Energy Catalyst Dissolve Atom by Atom

February 6, 2026
Please login to join discussion

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Barriers and Boosters of Seniors’ Physical Activity in Karachi

Evaluating Pediatric Emergency Care Quality in Ethiopia

TPMT Expression Predictions Linked to Azathioprine Side Effects

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.