• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, August 26, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Chemists uncover a means to control catalytic reactions

Bioengineer by Bioengineer
December 12, 2016
in Science News
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

TORONTO, ON – Scientists at the University of Toronto have found a way to make catalysis – the use of catalysts to facilitate chemical reactions – more selective, breaking one chemical bond 100 times faster than another. The findings are described in a study published in Nature Communications.

The team of researchers, led by Nobel Prize-winning chemist John Polanyi, employed a combination of experiment and theory to discover that the position of the molecule on the catalytic surface is a key factor in determining the rate at which particular bonds break.

"We found that the microscopic positioning of the molecule relative to the catalytic surface below, rendered the catalyst highly bond-specific," says Polanyi, University Professor in the Department of Chemistry at U of T. "The closer the alignment of the bonds of the molecule to the rows of atoms in the catalyst, the more selective was the reaction."

The scientists investigated a chemical reaction that involved breaking carbon-to-iodine bonds in the organic molecule iodobenzene, by means of metallic copper, a common catalyst. The reaction was initiated by an electron coming from the tip of a microscope, which attached itself to the iodobenzene.

"We observed acceleration in the reactivity of the carbon-to-iodine bonds when those bonds were aligned along rows of copper atoms in the catalyst, as compared to the bonds aligned across the copper rows," says Kelvin Anggara, a PhD candidate in Polanyi's research group and a lead author of the study.

"The copper surface acted more strongly on bonds that were nearby than on bonds that were further away," Anggara says. "We saw 100-fold differences in reactivity between bonds pointing in specific directions on the catalyst."

The experiment could be explained by a mathematical model developed by the researchers over the past few years, which enabled them to produce a computer-generated movie of the motions of the atoms involved in the bond-breaking at the copper surface. It was the movie that revealed the reason why the copper catalyzed the bonds along its rows in preference to bonds across the rows.

"The copper atoms along the rows were slightly closer together, by about the diameter of a single atom, than the atoms across the rows," says Anggara. "This closer spacing promoted the breaking of bonds lying along the rows."

The method is rooted in the study of chemical reactions taking place at the surface of solid materials that has guided Polanyi and his colleagues for decades. Following his receipt of the Nobel Prize in chemistry in 1986 for observing the molecular motions in chemical reactions occurring in gases, Polanyi began studying the reactions of individual molecules lying on well-defined catalytic surfaces.

Polanyi says scientists are only beginning to understand how catalysis operates, and that the shift towards green chemistry makes knowing as much as possible about catalysts and how they reduce waste caused by chemical reactions more important than ever before.

"The challenge for the future will be to fabricate metal catalysts embodying atomic patterns that speed chemical reactions along pathways that lead to desired products," said Polanyi. "Recent advances in the construction of surfaces, atom-by-atom, lend themselves to the fabrication of such engineered-catalysts. We're now a bit closer to that, since we begin to understand what patterns of atoms make the best catalysts."

The findings are reported in the study "Bond selectivity in electron-induced reaction due to directed recoil on an anisotropic substrate." Support for the research was provided by the Natural Sciences and Engineering Research Council of Canada, U of T NSERC General Research Fund and the Connaught International Scholarship for Doctoral Studies. Computations were performed on the SciNet HPC Consortium supercomputer at U of T.

###

MEDIA CONTACTS:

Sean Bettam
Communications
Faculty of Arts & Science
University of Toronto
[email protected]
1-416-946-7950

Media Contact

Sean Bettam
[email protected]
416-946-7950
@UofTNews

http://www.utoronto.ca

############

Story Source: Materials provided by Scienmag

Share12Tweet8Share2ShareShareShare2

Related Posts

Expanding Pancreas Transplants: Benefits and Boundaries

August 26, 2025

Enhancing Biomechanics Learning with Prediction Problem-Based Method

August 26, 2025

AI Enhances Personalized Cancer Treatment Recommendations

August 26, 2025

Stress Hyperglycemic Ratio Links to Mortality in Diabetic Heart Failure

August 26, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    148 shares
    Share 59 Tweet 37
  • Molecules in Focus: Capturing the Timeless Dance of Particles

    142 shares
    Share 57 Tweet 36
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    115 shares
    Share 46 Tweet 29
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    81 shares
    Share 32 Tweet 20

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Expanding Pancreas Transplants: Benefits and Boundaries

Enhancing Biomechanics Learning with Prediction Problem-Based Method

AI Enhances Personalized Cancer Treatment Recommendations

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.