• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Groups of bacteria can work together to better protect crops and improve their growth

Bioengineer by Bioengineer
December 28, 2020
in Biology
Reading Time: 2 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Noam Eckshtain-Levi, Susanna Leigh Harris, Reizo Quilat Roscios, and Elizabeth Anne Shank

Certain bacteria, known as plant-growth-promoting bacteria (PGPB), can improve plant health or protect them from pathogens and are used commercially to help crops. To further improve agricultural yields, it is helpful to identify factors that can improve PGPB behavior.

Many PGPB form sticky communities of cells, known as biofilms, that help them adhere to plant roots. A group of scientists in North Carolina and Massachusetts were interested in finding other plant-associated bacteria that could help PGPB better adhere to plant roots, with the hope that increasing the number of PGPB cells attached to roots would increase their beneficial activities.

Using a liquid-growth-based method, they identified multiple bacterial strains that increased the adherence of PGPB to plant roots over time. These results indicate that the physical or chemical interactions between these different bacterial species result in better long-term maintenance of PGPB on roots.

“Our results highlight how bacteria can use each other for their own benefit. These findings could be used to create groups of bacteria that are able to work together to better protect crop plants and improve their growth,” said Elizabeth Shank, the senior scientist involved with this research. “The results of this research might also be used to better understand and design microbial treatments that could improve crop yields in agricultural settings.”

To conduct this research, Shank and her colleagues performed a high-throughput screen of bacteria originally obtained from the roots of wild-grown plants, ensuring that identified bacteria might naturally come into contact on the roots of plants in native soil environments. They also looked at how other native microbes might alter the behavior of each PGPB strain, emphasizing the importance of understanding how groups of plant-associated microbes affect plants.

This research specifically focused on a PGPB currently used in agricultural treatments so that their findings related to commercial interventions. According to Shank, “One important impact of our work may be further encouraging agricultural biotechnology companies to consider using groups of multiple bacteria (rather than a single isolate) in their search for better and longer-lasting biological treatments to improve crop yield and help increase food production.”

###

Their research also demonstrates how a reasonably fast and straightforward screen can identify important bacterial interactions and provides a starting point for future work studying the mechanisms of these cell-to-cell relationships. For more information, read “Bacterial Community Members Increase Bacillus subtilis Maintenance on the Roots of Arabidopsis thaliana” in the Phytobiomes Journal. For supplemental information, including a 60-second video, visit: https://susannalharris.com/research/.

Media Contact
Ashley Bergman Carlin
[email protected]

Related Journal Article

http://dx.doi.org/10.1094/PBIOMES-02-20-0019-R

Tags: Agricultural Production/EconomicsAgricultureBacteriologyBiologyEcology/EnvironmentFood/Food ScienceMicrobiologyMolecular BiologyPlant Sciences
Share13Tweet8Share2ShareShareShare2

Related Posts

Florida Cane Toad: Complex Spread and Selective Evolution

Florida Cane Toad: Complex Spread and Selective Evolution

February 7, 2026
New Study Uncovers Mechanism Behind Burn Pit Particulate Matter–Induced Lung Inflammation

New Study Uncovers Mechanism Behind Burn Pit Particulate Matter–Induced Lung Inflammation

February 6, 2026

DeepBlastoid: Advancing Automated and Efficient Evaluation of Human Blastoids with Deep Learning

February 6, 2026

Navigating the Gut: The Role of Formic Acid in the Microbiome

February 6, 2026
Please login to join discussion

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Evaluating Pediatric Emergency Care Quality in Ethiopia

TPMT Expression Predictions Linked to Azathioprine Side Effects

Improving Dementia Care with Enhanced Activity Kits

Subscribe to Blog via Email

Success! An email was just sent to confirm your subscription. Please find the email now and click 'Confirm' to start subscribing.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.