• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, October 4, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Groups of bacteria can work together to better protect crops and improve their growth

Bioengineer by Bioengineer
December 28, 2020
in Biology
Reading Time: 2 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Noam Eckshtain-Levi, Susanna Leigh Harris, Reizo Quilat Roscios, and Elizabeth Anne Shank

Certain bacteria, known as plant-growth-promoting bacteria (PGPB), can improve plant health or protect them from pathogens and are used commercially to help crops. To further improve agricultural yields, it is helpful to identify factors that can improve PGPB behavior.

Many PGPB form sticky communities of cells, known as biofilms, that help them adhere to plant roots. A group of scientists in North Carolina and Massachusetts were interested in finding other plant-associated bacteria that could help PGPB better adhere to plant roots, with the hope that increasing the number of PGPB cells attached to roots would increase their beneficial activities.

Using a liquid-growth-based method, they identified multiple bacterial strains that increased the adherence of PGPB to plant roots over time. These results indicate that the physical or chemical interactions between these different bacterial species result in better long-term maintenance of PGPB on roots.

“Our results highlight how bacteria can use each other for their own benefit. These findings could be used to create groups of bacteria that are able to work together to better protect crop plants and improve their growth,” said Elizabeth Shank, the senior scientist involved with this research. “The results of this research might also be used to better understand and design microbial treatments that could improve crop yields in agricultural settings.”

To conduct this research, Shank and her colleagues performed a high-throughput screen of bacteria originally obtained from the roots of wild-grown plants, ensuring that identified bacteria might naturally come into contact on the roots of plants in native soil environments. They also looked at how other native microbes might alter the behavior of each PGPB strain, emphasizing the importance of understanding how groups of plant-associated microbes affect plants.

This research specifically focused on a PGPB currently used in agricultural treatments so that their findings related to commercial interventions. According to Shank, “One important impact of our work may be further encouraging agricultural biotechnology companies to consider using groups of multiple bacteria (rather than a single isolate) in their search for better and longer-lasting biological treatments to improve crop yield and help increase food production.”

###

Their research also demonstrates how a reasonably fast and straightforward screen can identify important bacterial interactions and provides a starting point for future work studying the mechanisms of these cell-to-cell relationships. For more information, read “Bacterial Community Members Increase Bacillus subtilis Maintenance on the Roots of Arabidopsis thaliana” in the Phytobiomes Journal. For supplemental information, including a 60-second video, visit: https://susannalharris.com/research/.

Media Contact
Ashley Bergman Carlin
[email protected]

Related Journal Article

http://dx.doi.org/10.1094/PBIOMES-02-20-0019-R

Tags: Agricultural Production/EconomicsAgricultureBacteriologyBiologyEcology/EnvironmentFood/Food ScienceMicrobiologyMolecular BiologyPlant Sciences
Share13Tweet8Share2ShareShareShare2

Related Posts

blank

Revolutionary Graph Network Enhances Protein Interaction Prediction

October 4, 2025
DOG Gene Family in Wheat Drives Seed Dormancy

DOG Gene Family in Wheat Drives Seed Dormancy

October 4, 2025

Discovery of MrSTP20: Sugar Transporter in Salt Stress

October 4, 2025

SNARE Neofunctionalization Driven by Vacuole Retrieval

October 4, 2025
Please login to join discussion

POPULAR NEWS

  • New Study Reveals the Science Behind Exercise and Weight Loss

    New Study Reveals the Science Behind Exercise and Weight Loss

    93 shares
    Share 37 Tweet 23
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    90 shares
    Share 36 Tweet 23
  • Physicists Develop Visible Time Crystal for the First Time

    75 shares
    Share 30 Tweet 19
  • New Insights Suggest ALS May Be an Autoimmune Disease

    69 shares
    Share 28 Tweet 17

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Gastric Microbiome’s Role in Cancer Risk and Prognosis

Revolutionizing Optimization: Deep Learning for Complex Systems

Health Insurance Disparities Impact Midlife Depression Trends

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 62 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.