• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Device refines analysis of materials for fuel cells and batteries

Bioengineer by Bioengineer
December 21, 2020
in Chemistry
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Developed at an Engineering Research Center supported by FAPESP, the novel spectroelectrochemical cell can be used to study the behavior of electrolytes and catalysts by means of X-rays and infrared or even visible light

IMAGE

Credit: Researcher’s archive

A new device designed to help scientists study in detail what happens during electrochemical reactions has been developed by researchers at the Center for Innovation in New Energies (CINE) in collaboration with researchers at the Brazilian Synchrotron Light Laboratory (LNLS), a unit of the Brazilian Center for Research in Energy and Materials (CNPEM). CINE is an Engineering Research Center (ERC) established by FAPESP (São Paulo Research Foundation) and Shell and is hosted by the University of Campinas (UNICAMP) in the state of São Paulo, Brazil.

The device, a spectroelectrochemical cell, improves the performance of fuel cells, electrolyzers, batteries and other appliances used to convert chemical energy into electricity or vice-versa. A great deal of research on equipment of this kind has been done as part of the effort to develop renewable energy generating and storage solutions.

The new device is a cell that can be used to monitor electrochemical experiments involving a range of spectroscopic instruments that operate in specific frequency bands of the electromagnetic spectrum, such as infrared, visible light, and X-rays, and to analyze multilaterally the behavior of materials in electrochemical reactions – both molecules in electrolyte solution and electrodes.

An article on the research is published as a front cover feature by ChemElectroChem, alongside an interview with the last author, Pablo Sebastián Fernández, a researcher at CINE.

“The main difference and advantage of our device is that different kinds of analysis can be performed with a single cell, thanks to a window that can be swapped out in accordance with the analysis of interest,” Fernández told Agência FAPESP. “It’s possible to use windows transparent to infrared, windows transparent to visible light and windows transparent to X-rays, obtaining spectroscopic analysis in each of these frequency bands, among other things.”

This means a single cell is capable of in situ infrared spectroscopy, Raman spectroscopy (which uses visible light), and X-ray absorption and diffraction, among other techniques.

Aside from the special window, the device contains all the normal components of an electrochemical cell, such as a work electrode, counterelectrode, reference electrode, and electrolyte with salts and molecules of interest.

“The electromagnetic radiation beams that pass through the window interact with both the molecules of interest, which are in the electrolyte, and the catalyst whose efficiency is being studied,” Fernández said.

Another advantage, he added, is that the electrolytic solution can be changed during the analysis and measured under flow conditions, thanks to the cell’s architecture.

###

About São Paulo Research Foundation (FAPESP)

The São Paulo Research Foundation (FAPESP) is a public institution with the mission of supporting scientific research in all fields of knowledge by awarding scholarships, fellowships and grants to investigators linked with higher education and research institutions in the State of São Paulo, Brazil. FAPESP is aware that the very best research can only be done by working with the best researchers internationally. Therefore, it has established partnerships with funding agencies, higher education, private companies, and research organizations in other countries known for the quality of their research and has been encouraging scientists funded by its grants to further develop their international collaboration. You can learn more about FAPESP at http://www.fapesp.br/en and visit FAPESP news agency at http://www.agencia.fapesp.br/en to keep updated with the latest scientific breakthroughs FAPESP helps achieve through its many programs, awards and research centers. You may also subscribe to FAPESP news agency at http://agencia.fapesp.br/subscribe.

Media Contact
Joao Carlos Silva
[email protected]

Original Source

http://agencia.fapesp.br/34888/

Related Journal Article

http://dx.doi.org/10.1002/celc.202001242

Tags: Chemistry/Physics/Materials Sciences
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Breakthrough in Environmental Cleanup: Scientists Develop Solar-Activated Biochar for Faster Remediation

February 7, 2026
blank

Cutting Costs: Making Hydrogen Fuel Cells More Affordable

February 6, 2026

Scientists Develop Hand-Held “Levitating” Time Crystals

February 6, 2026

Observing a Key Green-Energy Catalyst Dissolve Atom by Atom

February 6, 2026
Please login to join discussion

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Evaluating Pediatric Emergency Care Quality in Ethiopia

TPMT Expression Predictions Linked to Azathioprine Side Effects

Improving Dementia Care with Enhanced Activity Kits

Subscribe to Blog via Email

Success! An email was just sent to confirm your subscription. Please find the email now and click 'Confirm' to start subscribing.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.