• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, September 29, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

The DNA regions in our brain that contribute to make us human

Bioengineer by Bioengineer
December 16, 2020
in Biology
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Source: Image by Gerd Altmann from Pixabay https://pixabay.com/illustrations/artificial-intelligence-brain-think-4389372/

With only 1% difference, the human and chimpanzee protein-coding genomes are remarkably similar. Understanding the biological features that make us human is part of a fascinating and intensely debated line of research. Researchers at the SIB Swiss Institute of Bioinformatics and the University of Lausanne have developed a new approach to pinpoint, for the first time, adaptive human-specific changes in the way genes are regulated in the brain. These results open new perspectives in the study of human evolution, developmental biology and neurosciences. The paper is published in Science Advances.

Gene expression, not gene sequence

To explain what sets human apart from their ape relatives, researchers have long hypothesized that it is not so much the DNA sequence, but rather the regulation of the genes (i.e. when, where and how strongly the gene is expressed), that plays the key role. However, precisely pinpointing the regulatory elements which act as ‘gene dimmers’ and are positively selected is a challenging task that has thus far defeated researchers (see box).

Marc Robinson-Rechavi, Group Leader at SIB and study co-author says: “To be able to answer such tantalizing questions, one has to be able identify the parts in the genome that have been under so called ‘positive’ selection [see box]. The answer is of great interest in addressing evolutionary questions, but also, ultimately, could help biomedical research as it offers a mechanistic view of how genes function.”

A high proportion of the regulatory elements in the human brain have been positively selected

Researchers at SIB and the University of Lausanne have developed a new method which has enabled them to identify a large set of gene regulatory regions in the brain, selected throughout human evolution. Jialin Liu, Postdoctoral researcher and lead author of the study explains: “We show for the first time that the human brain has experienced a particularly high level of positive selection, as compared to the stomach or heart for instance. This is exciting, because we now have a way to identify genomic regions that might have contributed to the evolution of our cognitive abilities!”

To reach their conclusions, the two researchers combined machine learning models with experimental data on how strongly proteins involved in gene regulation bind to their regulatory sequences in different tissues, and then performed evolutionary comparisons between human, chimpanzee and gorilla. “We now know which are the positively selected regions controlling gene expression in the human brain. And the more we learn about the genes they are controlling, the more complete our understanding of cognition and evolution, and the more scope there will be to act on that understanding,” concludes Marc Robinson-Rechavi.

Box – Positive selection: a hint of the functional relevance of a mutation

Most random genetic mutations neither benefit nor harm an organism: they accumulate at a steady rate that reflects the amount of time that has passed since two living species had a common ancestor. In contrast, an acceleration in that rate in a particular part of the genome can reflect a positive selection for a mutation that helps an organism to survive and reproduce, which makes the mutation more likely to be passed on to future generations. Gene regulatory elements are often only a few nucleotides long, which makes estimating their acceleration rate particularly difficult from a statistical point of view.

###

REFERENCE

Jialin Liu and Marc Robinson-Rechavi, Robust inference of positive selection on regulatory sequences in the human brain, Science Advances, 2020.
DOI: 0.1126/sciadv.abc9863

Media Contact
Maia Berman
[email protected]

Original Source

https://www.sib.swiss/about-sib/news/10816-the-dna-regions-in-our-brain-that-contribute-to-make-us-human

Related Journal Article

http://dx.doi.org/10.1126/sciadv.abc9863

Tags: Algorithms/ModelsBiodiversityBioinformaticsBiologyDevelopmental/Reproductive BiologyEvolutionGenesMolecular Biology
Share12Tweet8Share2ShareShareShare2

Related Posts

Orogeny Fuels Spider Family Diversification in Asia

Orogeny Fuels Spider Family Diversification in Asia

September 28, 2025

Unveiling Cacna1e Splice Variants’ Functional Diversity

September 28, 2025

Key Genes Uncovered for Banana Blood Disease Resistance

September 28, 2025

Streptococcus anginosus Found Across Female Urogenital Sites

September 28, 2025
Please login to join discussion

POPULAR NEWS

  • New Study Reveals the Science Behind Exercise and Weight Loss

    New Study Reveals the Science Behind Exercise and Weight Loss

    85 shares
    Share 34 Tweet 21
  • Physicists Develop Visible Time Crystal for the First Time

    73 shares
    Share 29 Tweet 18
  • Scientists Discover and Synthesize Active Compound in Magic Mushrooms Again

    56 shares
    Share 22 Tweet 14
  • How Donor Human Milk Storage Impacts Gut Health in Preemies

    55 shares
    Share 22 Tweet 14

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Cochrane Review Confirms Safety and Effectiveness of RSV Vaccines

Cochrane Review Confirms RSV Vaccines Are Safe and Effective

Addressing Frailty and Polypharmacy in Elderly Home Care

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 63 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.