• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, August 29, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Energy transition: Decentralized energy supply based on innovative cogeneration

Bioengineer by Bioengineer
December 10, 2020
in Science News
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Practical test of a redox-flow/lithium-ion battery pair for efficient and sustained power and heat supply

IMAGE

Credit: (Graphics: artbox, Bruchsal)

Increased use of renewable energy sources in future will require large storage capacities. As resources are scarce, alternatives to lithium-ion technology are studied. Within the framework of the “BiFlow” project, Karlsruhe Institute of Technology (KIT) and partners now develop a novel hybrid storage system that combines specific advantages of the lithium-ion battery with those of the redox-flow battery and can also be used to store heat. The project is funded with EUR 1.3 million by the Federal Ministry for Economic Affairs and Energy (BMWi).

So far, home storage systems for storing power from renewable energy sources have been mainly equipped with lithium-ion batteries. Li-ion batteries are compact and comparably inexpensive. In this respect, the less widely used redox-flow technology is at a disadvantage. The latter’s advantages, however, make operation attractive in certain cases. “Power and energy of redox-flow batteries can be scaled as desired. In addition, they have a long service life, good cycle stability, and high operational safety,” says Nina Munzke from KIT’s Battery Technology Center, manager of the BiFlow project. “We now plan to combine these two types of batteries and their advantages and to compensate their drawbacks. In addition, we want to use the electrolyte tanks of the redox-flow battery to store heat, thus increasing total efficiency of the system. This type of cogeneration is the first of its kind in the world.”       

Data for the Energy Transition: Test at the Students Residence

For the project, project partner Storion Energy GmbH (SEG) will install a redox-flow battery in the STAGE76 students residence in Bruchsal. Thanks to a special stack design by Storion (the energy converter of this battery type) high power densities.are achieved. KIT will be responsible for overall system integration and smart control of the entire storage system. The third project partner, Fraunhofer Institute for Chemical Technology (ICT), will develop an optimized electrolyte composition for the redox-flow battery, which will be needed for thermal use. The electrolyte used in the battery will not be recycled, but simply reused, evenafter about 20 years when the life of the battery system ends. 

In general, the storage system will increase the building’s independence of the power grid. Surpluses of solar power, which exceed the electric capacity of the hybrid storage system, will be used for the building’s heat supply, as will heat losses during charge and discharge of the redox-flow battery. Wide use of measurement instruments will enable in-depth analysis and visualization of system operation. “We are very happy about the installation of this research facility,” says Matthias Holoch, operator of the students residence. “It will not only provide important data for the energy transition, but supply our students with power and heat.”

Smart Energy Management of a Complex System

In addition, the hybrid storage system will provide a charging system for electric cars with three charging stations of 22 kW each. These charging stations will also be included in the self-consumption optimization scheme and controlled optimally based on the user behavior. “Our goal is an overall system of maximum economic efficiency. For this purpose, we do not only develop an optimized storage management system, but also an overarching smart energy management system. For sector coupling, BiFlow will combine power supply with heat supply and mobility in a system of high complexity,” says Dr. Christian Kupper from the Battery Technology Center, who is also involved in the project. 

###

More about the KIT Energy Center: http://www.energy.kit.edu 

Contact for this press release: Martin Heidelberger, Redakteur/Pressereferent, Phone: +49 721 608-41169, [email protected]

Being “The Research University in the Helmholtz Association”, KIT creates and imparts knowledge for the society and the environment. It is the objective to make significant contributions to the global challenges in the fields of energy, mobility, and information. For this, about 9,300 employees cooperate in a broad range of disciplines in natural sciences, engineering sciences, economics, and the humanities and social sciences. KIT prepares its 24,400 students for responsible tasks in society, industry, and science by offering research-based study programs. Innovation efforts at KIT build a bridge between important scientific findings and their application for the benefit of society, economic prosperity, and the preservation of our natural basis of life. KIT is one of the German universities of excellence.

This press release is available on the internet at http://www.kit.edu. 

Media Contact
Monika Landgraf
[email protected]

Original Source

https://www.kit.edu/kit/english/pi_2020_107_energy-transition-decentralized-energy-supply-based-on-innovative-cogeneration.php

Tags: Chemistry/Physics/Materials SciencesTechnology/Engineering/Computer Science
Share12Tweet8Share2ShareShareShare2

Related Posts

Understanding Occupational Therapy’s Role in Delirium Care

August 29, 2025

Early Hyperglycemia Linked to Risks in Low Birth Weight Infants

August 29, 2025

Isolating a Robust Heat-Resistant Metalloprotease from Geobacillus

August 29, 2025

NEXN Prevents Vascular Calcification via SERCA2 SUMOylation

August 29, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    151 shares
    Share 60 Tweet 38
  • Molecules in Focus: Capturing the Timeless Dance of Particles

    142 shares
    Share 57 Tweet 36
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    116 shares
    Share 46 Tweet 29
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    82 shares
    Share 33 Tweet 21

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Understanding Occupational Therapy’s Role in Delirium Care

Early Hyperglycemia Linked to Risks in Low Birth Weight Infants

Isolating a Robust Heat-Resistant Metalloprotease from Geobacillus

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.