• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, November 26, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Raman holography

Bioengineer by Bioengineer
November 30, 2020
in Chemistry
Reading Time: 2 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: ICFO/URV

Raman spectroscopy is widely used in analytical sciences to identify molecules via their structural fingerprint. In the biological context the Raman response provides a valuable label-free specific contrast that allows distinguishing different cellular and tissue contents. Unfortunately, spontaneous Raman scattering is very weak, over ten orders of magnitude weaker than fluorescence. Unsurprisingly, fluorescence microscopy is often the preferred choice for applications such as live cell imaging. Luckily, Raman can be enhanced dramatically on metal surfaces or in metallic nanogaps and this surface enhanced Raman scattering (SERS) can even overcome the fluorescence response. Nanometric SERS probes are thus promising candidates for biological sensing applications, preserving the intrinsic molecular specificity. Still, the effectiveness of SERS probes depends critically on the particle size, stability and brightness, and, so far, SERS-probe based imaging is rarely applied.

Now ICFO researchers Matz Liebel and Nicolas Pazos-Perez, working in the groups of ICREA professors Niek van Hulst (ICFO) and Ramon Alvarez-Puebla (Univ. Rovira i Virgili) have presented “holographic Raman microscopy”. First, they synthesized plasmonic superclusters from small nanoparticle building blocks, to generate very strong electric fields in a restricted cluster size. These extremely bright SERS nanoprobes require very low illumination light exposure in the near-infrared, thus reducing potential photo-damage of live cells to a minimum, and allow wide-field Raman imaging. Second, they took advantage of the bright SERS probes to realize 3D holographic imaging, using the scheme for incoherent holographic microscopy developed by Liebel and team in a study in Science Advances (Link). Remarkably, the incoherent Raman scattering is made to “self-interfere” to achieve Raman holography for the first time.

Liebel and Pazos-Perez demonstrated Fourier transform Raman spectroscopy of the wide-field Raman images and were able to localize single-SERS-particles in 3D volumes from one single-shot. The authors then used these capabilities to identify and track single SERS nanoparticles inside living cells in three dimensions.

The results, published in Nature Nanotechnology represent an important step towards multiplexed single-shot three-dimensional concentration mapping in many different scenarios, including live cell and tissue interrogation and possibly anti-counterfeiting applications.

###

Media Contact
Alina Hirschmann
[email protected]

Tags: BiochemistryBiomechanics/BiophysicsCell BiologyChemistry/Physics/Materials SciencesMolecular PhysicsNanotechnology/MicromachinesOptics
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Carbonate Ions Drive Water Ordering in CO₂ Reduction

November 25, 2025
Isolable Germa-Isonitrile with N≡Ge Triple Bond

Isolable Germa-Isonitrile with N≡Ge Triple Bond

November 24, 2025

Fluorescent RNA Switches Detect Point Mutations Rapidly

November 21, 2025

Engineering Ultra-Stable Proteins via Hydrogen Bonding

November 19, 2025
Please login to join discussion

POPULAR NEWS

  • New Research Unveils the Pathway for CEOs to Achieve Social Media Stardom

    New Research Unveils the Pathway for CEOs to Achieve Social Media Stardom

    203 shares
    Share 81 Tweet 51
  • Scientists Uncover Chameleon’s Telephone-Cord-Like Optic Nerves, A Feature Missed by Aristotle and Newton

    119 shares
    Share 48 Tweet 30
  • Neurological Impacts of COVID and MIS-C in Children

    94 shares
    Share 38 Tweet 24
  • Scientists Create Fast, Scalable In Planta Directed Evolution Platform

    100 shares
    Share 40 Tweet 25

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Impact of Drying Methods on Synbiotic Encapsulation

Transforming Lung Cancer Biomarker into Colorectal Risk Tool

Strengthening Pediatric Academic Medicine Amid Challenges

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 69 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.