• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, October 21, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Pesticide deadly to bees now easily detected in honey

Bioengineer by Bioengineer
November 24, 2020
in Chemistry
Reading Time: 2 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Janusz Pawliszyn

A common insecticide that is a major hazard for honeybees is now effectively detected in honey thanks to a simple new method.

Researchers at the University of Waterloo developed an environmentally friendly, fully automated technique that extracts pyrethroids from the honey. Pyrethroids are one of two main groups of pesticides that contribute to colony collapse disorder in bees, a phenomenon where worker honeybees disappear, leaving the queen and other members of the hive to die. Agricultural producers worldwide rely on honeybees to pollinate hundreds of billions of dollars worth of crops.

Extracting the pyrethroids with the solid phase microextraction (SPME) method makes it easier to measure whether their levels in the honey are above those considered safe for human consumption. It can also help identify locations where farmers use the pesticide and in what amounts. The substance has traditionally been difficult to extract because of its chemical properties.

“Pyrethroids are poorly soluble in water and are actually suspended in honey,” said Janusz Pawliszyn, a professor of chemistry at Waterloo. “We add a small amount of alcohol to dissolve them prior to extraction by the automated SPME system.”

Farmers spray the pesticides on crops. They are neurotoxins, which affect the way the brain and nerves work, causing paralysis and death in insects.

“It is our hope that this very simple method will help authorities determine where these pesticides are in use at unsafe levels to ultimately help protect the honeybee population,” said Pawliszyn.

The Canadian Food Inspection Agency tests for chemical residues in food in Canada. Maximum residue limits are regulated under the Pest Control Products Act. The research team found that of the honey products they tested that contained the pesticide, all were at allowable levels.

###

The research appears in the journal Food Chemistry.

Media Contact
Pamela Smyth
[email protected]

Original Source

https://uwaterloo.ca/stories/science/pesticide-deadly-bees-now-easily-detected-honey

Tags: Agricultural Production/EconomicsBiodiversityChemistry/Physics/Materials SciencesEcology/EnvironmentEntomologyFertilizers/Pest ManagementFood/Food Science
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

BESSY II Unveils Phosphorus Chains: A One-Dimensional Material Exhibiting Unique 1D Electronic Behavior

October 21, 2025
Sustainable Photocatalysis Powered by Red Light and Recyclable Catalysts

Sustainable Photocatalysis Powered by Red Light and Recyclable Catalysts

October 21, 2025

Compact Chaos-Enhanced Spectrometer Revolutionizes Precision Analysis

October 21, 2025

Shanghai Tower Inspires Creation of First Synthetic Dynamic Helical Polymer

October 21, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1271 shares
    Share 508 Tweet 317
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    304 shares
    Share 122 Tweet 76
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    138 shares
    Share 55 Tweet 35
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    130 shares
    Share 52 Tweet 33

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Revolutionary CAR T Cells Target HIV-Linked B Cell Cancers

Exosomal miR-122-5p Fights Kidney Fibrosis via HIF-1α

New Study Highlights Health, Economic, and Societal Gains from Vaccination

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 66 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.