• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Creating higher energy density lithium-ion batteries for renewable energy applications

Bioengineer by Bioengineer
November 24, 2020
in Chemistry
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Improving lithium-ion battery performance, cell lifetime with graphene-coated nickel, cobalt, aluminum nanoparticle cathodes

IMAGE

Credit: Jin-Myoung Lim and Norman S. Luu, Northwestern University

WASHINGTON, November 24, 2020 — Lithium-ion batteries (LIBs) that function as high-performance power sources for renewable applications, such as electric vehicles and consumer electronics, require electrodes that deliver high energy density without compromising cell lifetimes.

In the Journal of Vacuum Science and Technology A, by AIP Publishing, researchers investigate the origins of degradation in high energy density LIB cathode materials and develop strategies for mitigating those degradation mechanisms and improving LIB performance.

Their research could be valuable for many emerging applications, particularly electric vehicles and grid-level energy storage for renewable energy sources, such as wind and solar.

“Most of the degradation mechanisms in LIBs occur at the electrode surfaces that are in contact with the electrolyte,” said author Mark Hersam. “We sought to understand the chemistry at these surfaces and then develop strategies for minimizing degradation.”

The researchers employed surface chemical characterization as a strategy for identifying and minimizing residual hydroxide and carbonate impurities from the synthesis of NCA (nickel, cobalt, aluminum) nanoparticles. They realized the LIB cathode surfaces first needed to be prepared by suitable annealing, a process by which the cathode nanoparticles are heated to remove surface impurities, and then locked into the desirable structures with an atomically thin graphene coating.

The graphene-coated NCA nanoparticles, which were formulated into LIB cathodes, showed superlative electrochemical properties, including low impedance, high rate performance, high volumetric energy and power densities, and long cycling lifetimes. The graphene coating also acted as a barrier between the electrode surface and the electrolyte, which further improved cell lifetime.

While the researchers had thought the graphene coating alone would be sufficient to improve performance, their results revealed the importance of pre-annealing the cathode materials in order to optimize their surface chemistry before the graphene coating was applied.

While this work focused on nickel-rich LIB cathodes, the methodology could be generalized to other energy storage electrodes, such as sodium-ion or magnesium-ion batteries, that incorporate nanostructured materials possessing high surface area. Consequently, this work establishes a clear path forward for the realization of high-performance, nanoparticle-based energy storage devices.

“Our approach can also be applied to improve the performance of anodes in LIBs and related energy storage technologies,” said Hersam. “Ultimately, you need to optimize both the anode and cathode to achieve the best possible battery performance.”

###

The article, “Enhancing nanostructured nickel-rich lithium-ion battery cathodes via surface stabilization,” is authored by Jin-Myoung Lim, Norman S. Luu, Kyu-Young Park, Mark T. Z. Tan, Sungkyu Kim, Julia R. Downing, Kai He, Vinayak P. Dravid, and Mark C. Hersam. The article will appear in Journal of Vacuum Science & Technology A on Nov. 24, 2020 (DOI: 10. 10.1116/6.0000580). After that date, it can be accessed at https://aip.scitation.org/doi/10.1116/6.0000580.

ABOUT THE JOURNAL

Journal of Vacuum Science & Technology A, an AVS journal published by AIP Publishing, features reports of original research, letters, and review articles on interfaces and surfaces of materials, thin films, and plasmas. JVST A publishes reports that advance the fundamental understanding of interfaces and surfaces at a fundamental level and that use this understanding to advance the state of the art in various technological applications. See https://avs.scitation.org/journal/jva.

ABOUT AVS

AVS is an interdisciplinary, professional society with some 4,500 members worldwide. Founded in 1953, AVS hosts local and international meetings, publishes five journals, serves members through awards, training and career services programs and supports networking among academic, industrial, government, and consulting professionals. Its members come from across the fields of chemistry, physics, biology, mathematics, engineering and business and share a common interest in basic science, technology development and commercialization related to materials, interfaces, and processing. https://www.avs.org

Media Contact
Larry Frum
[email protected]

Related Journal Article

http://dx.doi.org/10.1116/6.0000580

Tags: Chemistry/Physics/Materials SciencesElectrical Engineering/ElectronicsEnergy/Fuel (non-petroleum)Technology/Engineering/Computer Science
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Breakthrough in Environmental Cleanup: Scientists Develop Solar-Activated Biochar for Faster Remediation

February 7, 2026
blank

Cutting Costs: Making Hydrogen Fuel Cells More Affordable

February 6, 2026

Scientists Develop Hand-Held “Levitating” Time Crystals

February 6, 2026

Observing a Key Green-Energy Catalyst Dissolve Atom by Atom

February 6, 2026
Please login to join discussion

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Decoding Prostate Cancer Origins via snFLARE-seq, mxFRIZNGRND

Digital Health Perspectives from Baltic Sea Experts

Florida Cane Toad: Complex Spread and Selective Evolution

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.