• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, August 21, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Researchers minimize quantum backaction in thermodynamic systems via entangled measurement

Bioengineer by Bioengineer
November 23, 2020
in Chemistry
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: WU Kangda et al.

Led by academician Prof. GUO Guangcan from the Chinese Academy of Sciences (CAS), Prof. LI Chuanfeng’s group and Prof. XIANG Guoyong’s group from University of Science and Technology of China (USTC), CAS, in cooperation with theoretical physicists from Germany, Italy and Switzerland, conducted the first experiment using entangled collective measurement for minimizing quantum measurement backaction based on photonic system.

The result was published online in Physical Review Letters on Nov. 16.

When an observable object is measured twice on an evolving coherent quantum system, the first measurement usually changes the statistical information of the second measurement because the first measurement broke the quantum coherence of the system, which is called measurement backaction.

A former theoretical work of Dr. Mart í Perarnau Llobet in 2017 pointed out that, without violating the basic requirements of quantum thermodynamics, measurement backaction can’t be completely avoided, but the degree of backaction caused by projective measurement can be reduced through collective measurement.

Based on the above theoretical research results, Prof. XIANG and the coauthors realized the quantum collective measurement and successfully observed the reduction of measurement backaction in 2019.

Since the quantum collective measurements used in previous works were separable, a natural question can be raised: whether there is quantum entangled collective measurement which reduces more backaction than what we have achieved.

Prof. XIANG and his theoretical collaborators studied the optimal collective measurement in the two qubit system. They found that there is an optimal entanglement collective measurement theoretically, which can minimize the backaction in a two qubit system, and the backaction can be suppressed to zero in the case of strongly coherent evolution.

Then, they designed and implemented the entanglement measurement via photonic quantum walk with fidelity up to 98.5%, and observed the reduction of the reaction of projection measurement.

This work is significant to the study of collective measurement and quantum thermodynamics. The referees commented the work as representing a major advance in the field: “The experiment is well executed, as the results follow closely what one would expect from an ideal implementation. Overall, I find the article a highly interesting contribution to the topic of quantum backaction and a great combination of new theory and flawless experimental implementation.”

###

Media Contact
Jane FAN Qiong
[email protected]

Original Source

http://english.cas.cn/newsroom/research_news/phys/202011/t20201121_252890.shtml

Related Journal Article

http://dx.doi.org/10.1103/PhysRevLett.125.210401

Tags: Chemistry/Physics/Materials SciencesOptics
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Exploring Dark Matter Through Exoplanet Research

August 21, 2025
The Evolution of Metalenses: From Single Devices to Integrated Arrays

The Evolution of Metalenses: From Single Devices to Integrated Arrays

August 21, 2025

Zigzag Graphene Nanoribbons with Porphyrin Edges

August 21, 2025

Bending Light: UNamur and Stanford Unite to Revolutionize Photonic Devices

August 21, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Molecules in Focus: Capturing the Timeless Dance of Particles

    141 shares
    Share 56 Tweet 35
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    114 shares
    Share 46 Tweet 29
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    81 shares
    Share 32 Tweet 20
  • Modified DASH Diet Reduces Blood Sugar Levels in Adults with Type 2 Diabetes, Clinical Trial Finds

    60 shares
    Share 24 Tweet 15

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Boston University Secures Funding to Enhance Autistic Adults’ Participation in Colorectal Health Research

Exploring Dark Matter Through Exoplanet Research

Enhancing Forecasts for Progressive Knee Osteoarthritis Through AI-Driven Model

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.