• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, August 2, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Breaking the power and speed limit of lasers

Bioengineer by Bioengineer
November 19, 2020
in Science News
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Researchers invent a novel vertical-cavity surface-emitting laser, the workhorses of datacenters and optical sensors

IMAGE

Credit: Volker Sorger/GWU

SUMMARY

Researchers at the George Washington University have developed a new design of vertical-cavity surface-emitting laser (VCSEL) that demonstrates record-fast temporal bandwidth. This was possible by combining multiple transverse coupled cavities, which enhances optical feedback of the laser. VCSELs have emerged as a vital approach for realizing energy-efficient and high-speed optical interconnects in data centers and supercomputers.

THE SITUATION

VCSELs are a vital class of semiconductor laser diodes accompanying a monolithic laser resonator that emits light in a direction perpendicular to the chip surface. This class of lasers is gaining market importance given their compact size and high optoelectronic performance. As miniaturized lasers, they are used as an optical source in highspeed, short-wavelength communications and optical data networks. Dense traffic and high-speed transmission are key requirements for smart sensor applications in automotive or in data communications, which are enabled by compact and high-speed VCSELs. However, the 3-dB bandwidth, known as the speed limit of VCSELs, is limited by thermal effects, parasitic resistance, capacitance and nonlinear gain effects.

THE SOLUTION

Direct modulation of VCSELs cannot exceed about 30 GHz due to nonlinear optical amplification effects known as gain relaxation oscillations. This invention introduces a revolutionary novel VCSEL design. Since feedback inside the laser needs to be carefully managed, researchers introduced a multi-feedback approach by combining multiple coupled cavities. This allowed them to strengthen the feedback known as “slow-light,” thus extending the temporal laser bandwidth (speed) beyond the known limit of the relaxation oscillation frequency. The innovation is ground-breaking because the direct feedback from each cavity only needs to be moderate and can be controlled precisely via the coupled cavities, allowing for a higher degree of design freedom. Following this coupled cavity scheme, a resulting modulation bandwidth in the 100 GHz range is expected.

FROM THE RESEARCHERS

“Here we introduce a paradigm-shift in laser design. We utilize a novel coupled cavities approach to carefully control the feedback to the laser achieved by significantly slowing the laser light down. This coupled cavity approach adds a new degree of freedom for laser design, with opportunities in both fundamental science and technology.”
– Volker Sorger, associate professor of electrical and computer engineering at the George Washington University.

“This invention is timely since demand for data services is growing rapidly and moving towards next generation communication networks such as 6G, but also in automotive as proximity sensor or smart phone’s face ID. Furthermore, the coupled cavity system paves a way for emerging applications in quantum information processors such as coherent Ising machines.”

###

Dr. Hamed Dalir, co-author on the paper and inventor of the technology

PUBLICATION INFORMATION

The paper, “Hexagonal Transverse Coupled Cavity VCSEL Redefining the High-Speed Lasers,” was published today in the journal Nanophotonics.

To schedule an interview with Dr. Sorger, please contact Timothy Pierce at [email protected].

Media Contact
Timothy Pierce
[email protected]

Original Source

https://mediarelations.gwu.edu/breaking-power-speed-limit-lasers

Related Journal Article

http://dx.doi.org/10.1515/nanoph-2020-0437

Tags: Computer ScienceElectrical Engineering/ElectronicsSuperconductors/SemiconductorsTechnology/Engineering/Computer ScienceTelecommunications
Share12Tweet8Share2ShareShareShare2

Related Posts

Quantum Correlations Boost Dual-Comb Spectroscopy Precision

Quantum Correlations Boost Dual-Comb Spectroscopy Precision

August 2, 2025
blank

Flame Synthesis Creates Custom High-Entropy Metal Nanomaterials

August 2, 2025

Dental Stem Cells Differentiate on Biodentine Nanofibers

August 2, 2025

CSF ctDNA: New Biomarker for NSCLC Brain Mets

August 2, 2025
Please login to join discussion

POPULAR NEWS

  • Blind to the Burn

    Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    60 shares
    Share 24 Tweet 15
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    44 shares
    Share 18 Tweet 11
  • Dr. Miriam Merad Honored with French Knighthood for Groundbreaking Contributions to Science and Medicine

    46 shares
    Share 18 Tweet 12
  • Study Reveals Beta-HPV Directly Causes Skin Cancer in Immunocompromised Individuals

    38 shares
    Share 15 Tweet 10

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Quantum Correlations Boost Dual-Comb Spectroscopy Precision

Flame Synthesis Creates Custom High-Entropy Metal Nanomaterials

Dental Stem Cells Differentiate on Biodentine Nanofibers

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.