• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Dissecting colloidal glasses using laser as a lancet

Bioengineer by Bioengineer
November 11, 2020
in Chemistry
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IBS researchers in South Korea probe the cage formation of the glass at surgical precision and elucidate the onset of glass transition

IMAGE

Credit: IBS

Bo Li, Kai Kou, Research Fellows of IBS Center for Soft and Living Matter, Walter Kob, Professor of University of Montpellier and Institute Universitaire de France and Steve Granick, Director of the IBS Center for Soft and Living Matter report together in the 7833 issue of the journal Nature that onset of glass transition is a highly non-trivial process involving complex non-linear responses.

As a substance that has been giving remarkable impetus to both the convenience of our daily life and the advance of modern science and technology, glasses puzzle us, however, on the basic science level. “Glasses see much incremental study but rarely a breakthrough, regardless of the endeavors from generations of scientists,” commented Granick.

The reported non-monotonic dynamical length scale peaking at the onset temperature subverts the prevalent understanding that cage formation is a simple crossover between liquid and glass. “One central question in glass science is the cage formation process that gives the glassy materials their unique optical and mechanical properties,” said Kob, “and we directly hit the problem by locally exciting a colloidal glass using laser beams” said Li.

The emergence of the non-monotonic length scale results from the buildup of domains with cooperative dynamics that become increasingly rigid and start to dominate the particle dynamics. “Just like the painting of Seurat, the mosaic of the dynamical grains,” Kob commented with enthusiasm, “and the cage formation is directly related to the merging of them.” “The beauty of science here is that we are able to see how glasses germinate from the liquids microscopically,” Li said.

The simple physical picture of the enhanced cooperative dynamics for the non-monotonic response suggests the finding should be general. Kob said, “It’s amazing that the physical rule behind such rich dynamics is so concise.” “And our findings in a well-defined model system will help better understanding other glassy or disordered systems like polymer, granular and atomic glasses, etc.” Li remarked.

In addition to the non-monotonic behavior, a scaling relation between the morphology and size of the excitation pattern is extracted based on huge amount of experimental data. “The deviation of this relation reflects the degree of a material’s heterogeneity at certain condition” said Li. And Granick remarked, “This scaling law, besides its theoretical importance for physicists, will interest chemists and material scientists as well by offering them a ‘ruler’ that guides the design and synthesis of glass materials.”

Beyond enlightening the first step of glass transition, this proof-of-concept experiment paves the way for the fundamental understanding of glasses eventually. “Using laser as a lancet, a glass sample can be precisely anatomized,” said Granick. “More and more exotic yet puzzling behaviors in glasses will be assessed in this way,” remarked Kob.

This work is motivated by the long-standing challenges in glass science. The sluggish and highly coupled dynamics always burry the key effect. “If only I can shrink myself, jump into the system and stir the surroundings”, once Li conceived, “perhaps laser is a good choice”. The femtosecond holographic laser system originally developed by Lou perfectly satisfy the needs of the local excitation. Valuable theoretical support is obtained from Kob for refining the complex experimental observations into concise physical principles. “The highly interdisciplinary environment in our center and successful international collaboration makes a once improbable brainstorm real”, commented Granick.

Granick and Kob concluded: “The field of glass science, being classic but constantly challenging, is promoted by this experiments that elucidating the onset of glass transition. The conceptual importance of cage-formation for the properties of glassy materials is revealed. And the micro-rheological approach taken here opens the door to the thorough understanding of the glasses one day.”

###

These findings were published in the 7833 issue of Nature magazine. The study was performed at the IBS Center for Soft and Living Matter by authors Bo Li, Kai Lou and Steve Granick, collaborating with Walter Kob from University of Montpellier.

Media Contact
Director Seve Granick
[email protected]

Related Journal Article

http://dx.doi.org/10.1038/s41586-020-2869-5

Tags: Chemistry/Physics/Materials Sciences
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Breakthrough in Environmental Cleanup: Scientists Develop Solar-Activated Biochar for Faster Remediation

February 7, 2026
blank

Cutting Costs: Making Hydrogen Fuel Cells More Affordable

February 6, 2026

Scientists Develop Hand-Held “Levitating” Time Crystals

February 6, 2026

Observing a Key Green-Energy Catalyst Dissolve Atom by Atom

February 6, 2026
Please login to join discussion

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Phage-Antibiotic Combo Beats Resistant Peritoneal Infection

Boosting Remote Healthcare: Stepped-Wedge Trial Insights

Barriers and Boosters of Seniors’ Physical Activity in Karachi

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.