• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, August 13, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Delivering proteins to testes could someday treat male infertility

Bioengineer by Bioengineer
October 21, 2020
in Biology
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Adapted from ACS Nano 2020, DOI: 10.1021/acsnano.0c04936

According to the Mayo Clinic, about 15% of couples are infertile, and male infertility plays a role in over one-third of these cases. Often, problems with sperm development are to blame. Now, researchers reporting in ACS Nano have found a way to deliver a protein important for sperm cell production directly to mouse testicles, where it restored normal sperm development and allowed previously infertile mice to father pups.

Male infertility often happens because of a lack of sperm in the semen, which can result from damage to the blood-testis barrier (BTB). This barrier protects reproductive cells from harmful toxicants and drugs, and a protein called PIN1 is important for its function. Mice genetically engineered to lack PIN1 are infertile, with small testes, depleted sperm stem cells and a low sperm count. Although scientists have considered gene therapies to treat male infertility, these procedures are risky because they could cause unwanted genetic changes in reproductive cells that might be passed onto offspring. Hyun-Mo Ryoo and colleagues wanted to develop a system to deliver proteins (such as PIN1) instead of genes to the testes, but first they had to find a way to get proteins through the complex tubes of the testicles and into cells.

The researchers developed a delivery system called Fibroplex, which consisted of spherical nanoparticles made of silk fibroin and a coating of lipids. They loaded PIN1 into Fibroplex, and showed that the particles appeared safe and didn’t show signs of toxicity or testicular damage in mice. When the team injected the PIN1-loaded Fibroplex into the testes of young mice with PIN1 deletions, the treatment restored nearly normal PIN1 levels and sperm stem cell numbers and repaired the BTB. Treated mice had normal testicular weight and size and about 50% of the sperm count of wild-type mice. Until about 5 months after treatment, when the protein degraded, the PIN1-Fibroplex-treated mice fathered a similar number of pups as wild-type mice, whereas untreated mice with PIN1 deletions remained infertile. This is the first demonstration of direct delivery of proteins into the testis to treat male infertility, the researchers say.

###

The authors acknowledge funding from the Ministry of Science and ICT of Korea and the National Research Foundation of Korea.

The abstract that accompanies this paper is available here.

The American Chemical Society (ACS) is a nonprofit organization chartered by the U.S. Congress. ACS’ mission is to advance the broader chemistry enterprise and its practitioners for the benefit of Earth and its people. The Society is a global leader in providing access to chemistry-related information and research through its multiple research solutions, peer-reviewed journals, scientific conferences, eBooks and weekly news periodical Chemical & Engineering News. ACS journals are among the most cited, most trusted and most read within the scientific literature; however, ACS itself does not conduct chemical research. As a specialist in scientific information solutions (including SciFinder® and STN®), its CAS division powers global research, discovery and innovation. ACS’ main offices are in Washington, D.C., and Columbus, Ohio.
 

To automatically receive news releases from the American Chemical Society, contact [email protected].
 

Follow us: Twitter | Facebook

Media Contact
Katie Cottingham
[email protected]

Tags: Chemistry/Physics/Materials SciencesDevelopmental/Reproductive BiologyFertilityGenesNanotechnology/MicromachinesSex-Linked Conditions
Share12Tweet8Share2ShareShareShare2

Related Posts

Genetic Breakthrough: The Unique DNA Factor That Distinguishes Humans

Genetic Breakthrough: The Unique DNA Factor That Distinguishes Humans

August 13, 2025
Mizzou Researchers Uncover New Insights into Immune Response to Influenza

Mizzou Researchers Uncover New Insights into Immune Response to Influenza

August 13, 2025

‘Essentiality’ Scan Uncovers Microbe’s Vital Survival Toolkit

August 13, 2025

First Gyrodactylus perccotti Found on Chinese Sleeper

August 13, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Molecules in Focus: Capturing the Timeless Dance of Particles

    140 shares
    Share 56 Tweet 35
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    79 shares
    Share 32 Tweet 20
  • Modified DASH Diet Reduces Blood Sugar Levels in Adults with Type 2 Diabetes, Clinical Trial Finds

    58 shares
    Share 23 Tweet 15
  • Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    61 shares
    Share 24 Tweet 15

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Micromovement Analysis and Reaction Times Offer New Insights into Predicting Alcohol Relapse After Treatment

Genetic Breakthrough: The Unique DNA Factor That Distinguishes Humans

Genomic Origins of Chaetognath’s Unique Body Plan

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.