• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Jumping water striders know how to avoid breaking of the water surface

Bioengineer by Bioengineer
December 8, 2016
in Science News
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Credit: JH Son, PG Jablonski, SI Lee

Water striders spend all their life on the surface of water, and the secrets of their ability to "skate" on the water surface have been discovered more than a decade ago. It is only recently that scientists began to study the biomechanics of nearly vertical jumps that water strider perform on water surface to escape from underwater predators such like fishes or backswimmers (Koh and Yang et al. Science 2015). But do they always succeed? The Asian proverb says, even monkeys fall from the trees! Would the water striders know when they are not going to jump so well? In the newest issue of Nature Communications, a team of biologists and engineers from Korea and Poland shows that water striders seem to know when they break the water surface and adjust their leg movements so that this does not happen.

Using slow motion video recordings of jumping insects (attached here and also available on YouTube), Jae Hak Son, Sang-im Lee and Piotr Jablonski made detailed descriptions of leg movements of nearly vertical jumps of water striders. Based on these data, Eunjin Yang and Ho-Young Kim built a mathematical model to explain jumping mechanics. Using this model, the researchers predicted the jump-speed maximizing behavior of several water strider species with a range of body sizes and leg morphologies and verified the predictions with the actual data.

The study reveals that jumping water striders behaved as if they "knew" when the water surface may be broken. Normally, the midlegs and hindlegs of the water striders provide the main support without breaking the surface layer of water. Small dimples are visible under each leg because the water surface is pushed against the body weight. When water striders jump upwards, they push downward the water surface further and the dimples quickly become deeper and deeper. As long as the dimples are not broken, the legs are supported on the water surface and push the body upwards making the quick jump possible. But, if the legs move too fast and too deep, then the dimple is broken and therefore the support on the water surface is lost. This makes the jumps slower, and the escape from predators less effective. Using a mathematical model, the researchers calculated for a the range of insect body sizes and leg morphologies the critical leg speed beyond which the dimple is predicted to break. The actual leg movements of these species of different body weights and morphologies were JUST below this critical thresholds. Hence, the insects move their legs fast, but just not too fast, in order to maximize the jump speeds.

It is now yet known if this precise adjustment of leg movements is based on individual learning or innate or "hard-wired" ability.

###

A video clip illustrating a vertical jump is here

Contact persons:

PG Jablonski: [email protected]
HY Kim: [email protected];

Additional video clips released earlier in our research on water striders are here:

https://www.youtube.com/watch?v=cDwGRyFiNoM
https://www.youtube.com/watch?v=4Sr0im-umSU
https://www.youtube.com/watch?v=GLy7Obl6jLc

Media Contact

Piotr Jablonski
[email protected]
82-103-239-1959

http://www.behecolpiotrsangim.org/index.php

############

Story Source: Materials provided by Scienmag

Share12Tweet8Share2ShareShareShare2

Related Posts

Evaluating Pediatric Emergency Care Quality in Ethiopia

February 7, 2026

TPMT Expression Predictions Linked to Azathioprine Side Effects

February 7, 2026

Improving Dementia Care with Enhanced Activity Kits

February 7, 2026

Decoding Prostate Cancer Origins via snFLARE-seq, mxFRIZNGRND

February 7, 2026
Please login to join discussion

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Evaluating Pediatric Emergency Care Quality in Ethiopia

TPMT Expression Predictions Linked to Azathioprine Side Effects

Improving Dementia Care with Enhanced Activity Kits

Subscribe to Blog via Email

Success! An email was just sent to confirm your subscription. Please find the email now and click 'Confirm' to start subscribing.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.