• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, January 20, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Turning excess noise into signal

Bioengineer by Bioengineer
October 15, 2020
in Chemistry
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: by Aaron M. Kho, Tingwei Zhang, Jun Zhu, Conrad W. Merkle, Vivek J. Srinivasan

During the early 1800s, the first spectrometer was developed by spreading different colors of sunlight onto a screen. It was later noticed that certain dark bands in the solar spectrum, known as Fraunhofer lines, are associated with chemical elements in the solar atmosphere. Since then, scientists have applied spectroscopy to many different fields including astronomy, medicine, agriculture, chemistry, and security.

Typically composed of a diffractive element (such as a prism), a focusing element (such as a lens), and a detector, spectrometers measure emitted light intensity on a wavelength-by-wavelength basis to retrieve information about an object of interest. In a common design, the detector is a camera with pixels that measure different parts of the spectrum at the same time. Ideally, the ability to distinguish fine wavelength features, known as the spectral resolution, needs to be optimized. However, current approaches to characterize spectral resolution thoroughly require expensive additional components or intensive manual labor.

In a new paper published in Light: Science & Application, a team of scientists, led by Aaron Kho from the Department of Biomedical Engineering, University of California Davis, United States, have developed a simple method to comprehensively assess spectrometer performance within seconds using only incoherent excess noise, i.e. fluctuations of light in excess of fundamental shot noise.

“This application of excess noise was originally inspired by speckle. Also initially viewed as a nuisance after the invention of the laser, speckle was later discovered to be useful for measuring blood flow, particle size, and the diffraction limit. Similarly, we found that excess noise can be useful too,” Mr. Kho said.

Here, Kho and colleagues propose that incoherent excess noise instills broadband light with high-resolution spectral encoding. With this insight, they devise and demonstrate an excess noise approach for rapidly characterizing the spectral resolution of broadband spectrometers. They also demonstrate a related, excess noise approach that is applied to two different spectrometers to create a precise one-to-one mapping between pixels that detect the same wavelength. The scientists call this procedure cross-calibration. Remarkably, both approaches are actually strengthened by incoherent excess noise, which degrades performance in most other photonics applications.

A major biomedical application of spectrometers is spectral domain Optical Coherence Tomography (OCT), an imaging modality where the spectrometer measures an interference pattern to produce fine depth-resolved retinal images of living subjects. To date, spectrometer performance has limited the development of OCT at visible wavelengths. The authors demonstrate the utility of their excess noise characterization approach by employing it to provide feedback during visible light OCT spectrometer alignment. Achieving improved spectral resolution uniformity across a broad wavelength range, they demonstrate high quality visible light OCT imaging of the human and mouse retinas. The improved uniformity of depth resolution and sensitivity help to reveal a new band in the mouse photoreceptor layer.

“The proposed characterization and cross-calibration approaches will improve the rigor and reproducibility of data in the many fields that use spectrometers. The approaches seem to work with both superluminescent diodes and some supercontinuum light sources, which are widespread,” said Vivek J. Srinivasan, Associate Professor of Biomedical Engineering at University of California Davis and senior author on the study.

He continued to forecast: “The idea that the spectral encoding provided by excess noise can serve a useful purpose is also important. This insight could aid in the discovery of other applications where excess noise is similarly useful.”

###

Media Contact
Vivek J. Srinivasan
[email protected]

Related Journal Article

http://dx.doi.org/10.1038/s41377-020-00404-6

Tags: Chemistry/Physics/Materials SciencesOptics
Share14Tweet9Share3ShareShareShare2

Related Posts

Creating Synthetic Protein-Binding DNA Systems in Cells

January 17, 2026
blank

Chiral Catalysis Powers Rotary Molecular Motors

January 16, 2026

Selective GlcNAc to GalNAc Epimerization via Kinetic Control

January 15, 2026

Thermal [2+2] Cycloaddition Builds Gem-Difluoro Bicycloalkanes

January 13, 2026
Please login to join discussion

POPULAR NEWS

  • Enhancing Spiritual Care Education in Nursing Programs

    155 shares
    Share 62 Tweet 39
  • PTSD, Depression, Anxiety in Childhood Cancer Survivors, Parents

    148 shares
    Share 59 Tweet 37
  • Robotic Ureteral Reconstruction: A Novel Approach

    78 shares
    Share 31 Tweet 20
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    55 shares
    Share 22 Tweet 14

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Evaluating Sustainable Detonations in Pulse Engines

Sarcopenia: Widespread Issue Among Older Pakistanis

Necrosis: Linking Liver Inflammation to Cancer Progression

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 71 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.