• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, August 20, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Primates aren’t quite frogs

Bioengineer by Bioengineer
October 12, 2020
in Chemistry
Reading Time: 4 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Spinal modules in macaques can independently control forelimb force direction and magnitude

IMAGE

Credit: The National Center of Neurology and Psychiatry

Japan — Researchers in Japan demonstrated for the first time the ‘spinal motor module hypothesis’ in the primate arm, opening a new pathway for recovery after disease or injury.

The human hand has 27 muscles and 18 joints, which our nervous system is able to coordinate for complex movements. However, the number of combinations — or degrees of freedom — is so large that attempting to artificially replicate this control and adjustment of muscle activity in real time taxes even a modern supercomputer. While the method used by the central nervous system to reduce this complexity is still being intensely studied, the “motor module” hypothesis is one possibility.

Under the motor module hypothesis, the brain recruits interneuronal modules in the spinal cord rather than individual muscles to create movement; wherein different modules can be combined to create specific movements. Nearly 40 years ago, research in frogs showed that simultaneously recruiting two modules of neurons controlling leg muscles created the same pattern of motor activity that represents a “linear summation” of the two component patterns.

An international team of researchers, led by Kazuhiko Seki at the National Center of Neurology and Psychiatry’s Department of Neurophysiology, in collaboration with David Kowalski of Drexel University and Tomohiko Takei of Kyoto University’s Hakubi Center for Advanced Research, attempted to determine if this motor control method is also present in the primate spinal cord. If validated, it would provide new insight into the importance of spinal interneurons in motor activity and lead to new ideas in movement disorder treatments and perhaps even a method to “reanimate” a limb post-spinal injury.

The team implanted a small array of electrodes into the cervical spinal cord in three macaques. Under anesthesia, different groups of interneurons were recruited individually using a technique called intraspinal microstimulation, or ISMS. The team found that, as in the frog leg, the force direction of the arm at the wrist during dual-site simulation was equal to the linear summation of the individually recruited outputs. However, unlike the frog leg, the force magnitude output could be many times higher than that expected from a simple linear summation of the individual outputs. When the team examined the muscle activity, they found that this supralinear summation was in a majority of the muscles, particularly in the elbow, wrist, and finger.

“This is a very interesting finding for two reasons,” explains Seki. “First, it demonstrates a particular trait of the primate spinal cord related to the increased variety of finger movements. Second, we now have direct evidence primates can use motor modules in the spinal cord to control arm movement direction and force magnitude both efficiently and independently.”

In effect, using paired stimulation in the primate spinal cord not only directly activate two groups of interneurons, INa and INb, which recruit their target muscle synergies, Syn-a and Syn-b, to set the arm trajectory, but can also activate a third set of interneurnons that can adapt the motor activity at the spinal level to change the force of the movement, group INc. This would let the brain plan the path the arm should take while the spinal cord adapts the muscle activity to make sure that path happens.

One example of this “plan and adapt” approach to motor control is the deceptively simple act of drinking from a can of soda. The brain can predetermine the best way to lift the can to your mouth for a sip, but the actual amount of soda in the can — and therefore the can’s weight — is perhaps unknown. Once your brain has determined the trajectory the can should take — in this case INa and INb — the amount of force needed to complete that action can be modulated separately in INc, rather than redetermining which sets of muscles will be needed.

This study experimentally proves for the first time that primate arm movements may be efficiently controlled by motor modules present in the spinal cord. Based on the results of this research, it is expected that the analysis and interpretation of human limb movements based on the motor module hypothesis will further advance in the future.

In the field of robotics, this control theory may lead to more efficient methods to create complex limb movements, while in the field of clinical medicine, it is expected that new diagnostic and therapeutic methods will be created by analyzing movement disorders caused by neurodegenerative diseases and strokes.

###

The paper “Forelimb force direction and magnitude independently controlled by spinal modules in the macaque” appeared on 12 October 2020 in the Proceedings of the National Academy of Sciences of the United States of America, with doi: 10.1073/pnas.1919253117

About Kyoto University

Kyoto University is one of Japan and Asia’s premier research institutions, founded in 1897 and responsible for producing numerous Nobel laureates and winners of other prestigious international prizes. A broad curriculum across the arts and sciences at both undergraduate and graduate levels is complemented by numerous research centers, as well as facilities and offices around Japan and the world. For more information please see: http://www.kyoto-u.ac.jp/en

About The National Center of Neurology and Psychiatry

The National Center of Neurology and Psychiatry (NCNP) contributes to human health and welfare. It offers high level of medicine for patients with mental, nervous, muscular and developmental disorders and aims to improve their quality of life. It promotes basic and clinical research on understanding and treating such disorders and produces highly qualified scientist and health care professionals.

[Media inquiries on research]
National Center of Neurology and Psychiatry
Kazuhiko Seki, Department of Neurophysiology
+81 42-346-1724
[email protected]

Media Contact
Raymond Kunikane Terhune
[email protected]

Related Journal Article

http://dx.doi.org/10.1073/pnas.1919253117

Tags: BiologyBiomechanics/BiophysicsEvolutionneurobiology
Share12Tweet8Share2ShareShareShare2

Related Posts

Scientists Unveil Groundbreaking Crystal That Produces Oxygen

Scientists Unveil Groundbreaking Crystal That Produces Oxygen

August 20, 2025
High-Frequency Molecular Vibrations Trigger Electron Movement

High-Frequency Molecular Vibrations Trigger Electron Movement

August 20, 2025

Scientists Amazed by Enormous Bubble Surrounding Supergiant Star

August 20, 2025

Non-Equilibrium Effects Driven by Rarefaction in Shock Wave and Boundary Layer Interactions

August 19, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Molecules in Focus: Capturing the Timeless Dance of Particles

    141 shares
    Share 56 Tweet 35
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    80 shares
    Share 32 Tweet 20
  • Modified DASH Diet Reduces Blood Sugar Levels in Adults with Type 2 Diabetes, Clinical Trial Finds

    60 shares
    Share 24 Tweet 15
  • Predicting Colorectal Cancer Using Lifestyle Factors

    47 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Oxygen Dilemma: Balancing Life’s Vital Element

Stable Isolated Quantum Spins Achieved on Magnetic Substrates

Scientists Unveil Groundbreaking Crystal That Produces Oxygen

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.