• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Carbon-carbon covalent bonds far more flexible than presumed

Bioengineer by Bioengineer
October 1, 2020
in Chemistry
Reading Time: 2 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Takuya Shimajiri, Takanori Suzuki, Yusuke Ishigaki, Angewandte Chemie International Edition, September 30, 2020

A Hokkaido University research group has successfully demonstrated that carbon-carbon (C-C) covalent bonds expand and contract flexibly in response to light and heat. This unexpected flexibility of C-C bonds could confer new properties to organic compounds.

Rigid and robust, C-C covalent bonds are the most basic structure in organic and biological compounds. Understanding their nature is essential to improving our knowledge of chemical phenomena.

Usually, the C-C bond length is almost constant. The researchers, however, conducted this study on the premise that extremely elongated C-C bonds are weak, and so can expand or contract in response to external stimuli. The group designed and synthesized compounds that cyclize to form cage-like structures when exposed to light. They investigated how the structural transformation influences the length of C-C bonds at compounds’ cores.

The researchers found that the C-C single bonds at the core contract flexibly during photocyclization. They also found that the cyclization can be reversed by heating, and the C-C bonds expand as the compounds return to the original state. Using single crystals of the compounds as analogs made it possible for the researchers to directly observe their flexibility and easily elucidate their structure in detail.

This is the first time the process of expansion and contraction of C-C bonds has been directly observed. The scientists concluded that this is a new phenomenon, in which C-C bonds obtained flexibility when they were elongated to the limit, decreasing the bonding energy. Furthermore, they showed that the oxidation potential of the compound changed by more than 1 volt due to the reversible expansion and contraction of the extremely elongated C-C bond, suggesting a new property related to the bond’s flexibility.

The researchers say that synthesizing compounds with even longer bonds may lead to more functions through unique responses or major changes in their properties. This challenging research, aimed at breaking the record for the length of the C-C single bond, plays a role in developing materials that can be activated/deactivated by a novel response mode.

The researchers are Takuya Shimajiri, Professor Takanori Suzuki and Assistant Professor Yusuke Ishigaki of Hokkaido University’s Department of Chemistry. The results of their study were published in Angewandte Chemie International Edition on September 30, 2020. This work follows their study in 2018, in which the group synthesized an organic compound with a record C-C bond length of more than 0.18 nanometers, compared to the standard 0.154 nanometers.

###

Media Contact
Sohail Keegan Pinto
[email protected]

Original Source

https://www.global.hokudai.ac.jp/blog/carbon-carbon-covalent-bonds-far-more-flexible-than-presumed/

Related Journal Article

http://dx.doi.org/10.1002/anie.202010615

Tags: Chemistry/Physics/Materials SciencesPolymer Chemistry
Share13Tweet8Share2ShareShareShare2

Related Posts

blank

Breakthrough in Environmental Cleanup: Scientists Develop Solar-Activated Biochar for Faster Remediation

February 7, 2026
blank

Cutting Costs: Making Hydrogen Fuel Cells More Affordable

February 6, 2026

Scientists Develop Hand-Held “Levitating” Time Crystals

February 6, 2026

Observing a Key Green-Energy Catalyst Dissolve Atom by Atom

February 6, 2026
Please login to join discussion

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Digital Health Perspectives from Baltic Sea Experts

Florida Cane Toad: Complex Spread and Selective Evolution

Exploring Decision-Making in Dementia Caregivers’ Mobility

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.