• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, September 14, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

WVU researcher to tackle the mysteries of dark energy and the universe beyond

Bioengineer by Bioengineer
September 30, 2020
in Chemistry
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Andre Recnik/CHIME

Though it makes up roughly 70 percent of the universe, dark energy is one of the greatest cosmological discoveries that is the least understood among scientists. A new project led by West Virginia University researcher Kevin Bandura will help scientists understand the nature of dark energy by mapping out the distribution of matter throughout the universe.

“Dark energy is the name we give to the cause of the current accelerated expansion of the universe we observe,” said Bandura, of the Lane Department of Computer Science and Electrical Engineering at the Statler College. “It seems to be the base energy that is part of all space creating an outward push everywhere.”

Since dark energy was discovered nearly two decades ago, the mystery of its origin and physics have only grown more complex, with new conflicting measurements adding to the uncertainty. The three-year project for $242,000 funded by the National Science Foundation will lead to a better understanding of how our universe is evolving over time by using precise observations to study the expansion itself.

According to Bandura, older cosmological theories predicted the universe would continue to expand indefinitely, but the rate of that expansion would slow over time. In the 1990s as scientists set out to measure the rate at which the universe was decelerating, they found that the expansion was instead speeding up. They dubbed the force responsible for the acceleration as dark energy.

Using a revolutionary new telescope, the Canadian Hydrogen Intensity Mapping Experiment, to measure distant galaxies through the emission of neutral hydrogen gas that resides within them, Bandura will be able to take a measurement of dark energy.

“By measuring neutral hydrogen emissions at 21-centimeter increments coming from all of the galaxies, and the space between galaxies, you can see the universe actually evolving,” Bandura said.

Rather than looking at individual planets, Bandura explained that by looking at the universe on a large scale–as in groups of galaxies instead of individual planets or a single galaxy–the total number of emissions stemming from each group can be calculated. The neutral hydrogen measurements will then be cross correlated with optical galaxy survey data to measure the large-scale structure of the universe.

“The neutral hydrogen signal we are looking for is actually very weak,” Bandura said. “We have to look through the Milky Way, which has many other bright sources of radio emissions which are stronger than the neutral hydrogen signal we are looking for.”

In order to measure the hydrogen emission, radio signals coming from our own galaxy have to be removed. This foreground removal requires a precise understanding of the CHIME telescope.

“We can remove the radio signal from our galaxy by using a detailed understanding of both our instrument and the fact that the galactic emission is smooth in frequency,” Bandura said. “We remove the smooth signals, and what is left is the neutral hydrogen emission.”

###

The project will also develop education-oriented radio receivers that will be used in STEM programs at WVU, MIT and Yale.

Media Contact
Paige Nesbit
[email protected]

Original Source

https://wvutoday.wvu.edu/stories/2020/09/30/wvu-researcher-to-tackle-the-mysteries-of-dark-energy-and-the-universe-beyond

Tags: AstrophysicsSpace/Planetary Science
Share12Tweet8Share2ShareShareShare2

Related Posts

Random-Event Clocks Offer New Window into the Universe’s Quantum Nature

Random-Event Clocks Offer New Window into the Universe’s Quantum Nature

September 11, 2025
Portable Light-Based Brain Monitor Demonstrates Potential for Advancing Dementia Diagnosis

Portable Light-Based Brain Monitor Demonstrates Potential for Advancing Dementia Diagnosis

September 11, 2025

Scientists reinvigorate pinhole camera technology for advanced next-generation infrared imaging

September 11, 2025

BeAble Capital Invests in UJI Spin-Off Molecular Sustainable Solutions to Advance Disinfection and Sterilization Technologies

September 11, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    153 shares
    Share 61 Tweet 38
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    116 shares
    Share 46 Tweet 29
  • Physicists Develop Visible Time Crystal for the First Time

    65 shares
    Share 26 Tweet 16
  • A Laser-Free Alternative to LASIK: Exploring New Vision Correction Methods

    49 shares
    Share 20 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Estimating Rice Canopy LAI Non-Destructively Across Varieties

How SARS-CoV-2 Spike Protein Activates TLR4

Boosting Xanthan Gum Production with Essential Oil By-products

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.