• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, August 18, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Mosquitos lost an essential gene with no ill effects

Bioengineer by Bioengineer
September 30, 2020
in Biology
Reading Time: 4 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

UMD study suggests caution is needed for research that presumes closely related species use the same genes for similar functions

IMAGE

Credit: Image credit: Alys Jarvela/University of Maryland.

University of Maryland entomologists discovered that a gene critical for survival in other insects is missing in mosquitos–the gene responsible for properly arranging the insects’ segmented bodies. The researchers also found that a related gene evolved to take over the missing gene’s job. Although laboratory studies have shown that similar genes can be engineered to substitute for one another, this is the first time that scientists identified a gene that naturally evolved to perform the same critical function as a related gene long after the two genes diverged down different evolutionary paths.

The work emphasizes the importance of caution in genetic studies that use model animals to make conclusions across different species. It also points to a new potential avenue for research into highly targeted mosquito control strategies. The research study was published in the September 30, 2020, issue of the journal Communications Biology.

“Every single arthropod has a segmented body plan. And you would think it develops the same way in all of them. But what we found is that it doesn’t,” said Alys Jarvela, a postdoctoral associate in the UMD Department of Entomology and the lead author of the study. “We learn a lot in biology by studying a process in a model organism and assuming that it works essentially the same way, using the same genes, in other organisms. That is still an incredibly useful approach. But, now we know that there is also a possibility for gene substitutions to be made in nature.”

Jarvela discovered the missing gene in mosquitos by accident. She was studying crickets and attempting to cross-check her genetic samples by comparing the gene sequences of crickets with those of other insects. She was specifically interested in a gene called paired, one of a handful of genes that guides the pattern of repeated parts in segmented animals like insects. Laboratory studies had shown that when paired is knocked out or silenced in fruit flies, every other segment of the insect’s body fails to develop, and it doesn’t survive.

“I was just trying to find the mosquito version of paired to use as a reference point, and I couldn’t find, it,” Jarvela said.

When she searched for paired in all publicly available databases of mosquito genomes, she discovered it was missing from every mosquito species represented.
“Once we accepted that the gene was really absent, we thought that was a pretty wild mystery and immediately changed gears to satisfy our curiosity,” Jarvela said.

Jarvela’s team searched the genomes of fly species closely related to mosquitos and found they all contained the paired gene. This indicated that the loss of paired is a recent evolutionary event that took place only in mosquitos. It was clear to the researchers that some other gene in mosquitos must be performing the same function as paired does in other insects.

They found clues suggesting which gene could be involved in a 1996 experiment on fruit flies. In that study, scientists knocked out paired and replaced it with a closely related gene called gooseberry, which normally has a distinct role at a later time in development. That was a highly engineered experiment, but it showed that when gooseberry was manipulated to express at the right time during development, fruit flies without the paired gene developed normal alternating segments and survived.

To find out if gooseberry had naturally evolved as a substitute for paired in mosquitos, Jarvela and her team used CRISPR to edit gooseberry out of a mosquito species called Anopheles stephensi. The mutated mosquito embryos looked like laboratory fruit fly embryos that had paired knocked out.

“This work shows that even when different species share a trait or feature, the genetic mechanisms underlying this shared trait may be different,” said Leslie Pick, professor and chair of the Department of Entomology at UMD and the study’s senior author. “In the case reported in this paper, segmentation still happens even though a gene we thought was essential is lost. Our next steps will be to search for additional examples of variation in gene regulatory networks in insects and try to determine how genetic rewiring occurs in nature.”

Jarvela is also interested in probing other aspects of mosquito development that may be affected by the loss of the paired gene. In addition to controlling segmentation, which is critical for survival, paired influences male fertility in fruit flies.

“That means different genes probably regulate male fertility in mosquitos, and they might be unique to the mosquito, which could potentially provide a powerful avenue for controlling mosquitoes without harming other insects such as butterflies and bees,” Jarvela said.

###

The research paper, “Regulatory gene function handoff allows essential gene loss in mosquitoes,” Alys M. Cheatle Jarvela, Catherine S. Trelstad, Leslie Pick, was published on September 30, 2020, in the journal Communications Biology.

This work was supported by the National Institutes of Health (Award No. R01GM113230). The content of this article does not necessarily reflect the views of this organization.

About the College of Computer, Mathematical, and Natural Sciences

The College of Computer, Mathematical, and Natural Sciences at the University of Maryland educates more than 9,000 future scientific leaders in its undergraduate and graduate programs each year. The college’s 10 departments and more than a dozen interdisciplinary research centers foster scientific discovery with annual sponsored research funding exceeding $200 million.

Media Contact
Kimbra Cutlip
[email protected]

Original Source

https://cmns.umd.edu/news-events/features/4664

Related Journal Article

http://dx.doi.org/10.1038/s42003-020-01203-w

Tags: BiodiversityBiologyDevelopmental/Reproductive BiologyEntomologyEvolutionGeneticsMolecular Biology
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

New Study Identifies Gene Behind Vibrant Color Patterns in African Violet Flowers

August 18, 2025
blank

New Study Finds Preventing an Hour of Intense Pain in Chickens Costs Under One-Hundredth of a Cent

August 18, 2025

Unveiling Ancient Insights Behind Modern Cytoskeleton Evolution

August 15, 2025

Researchers Identify Molecular “Switch” Driving Chemoresistance in Blood Cancer

August 15, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Molecules in Focus: Capturing the Timeless Dance of Particles

    141 shares
    Share 56 Tweet 35
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    80 shares
    Share 32 Tweet 20
  • Modified DASH Diet Reduces Blood Sugar Levels in Adults with Type 2 Diabetes, Clinical Trial Finds

    59 shares
    Share 24 Tweet 15
  • Predicting Colorectal Cancer Using Lifestyle Factors

    47 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

SwRI Innovates Spacecraft Orbital Debris Detection Technology

Reusable ‘jelly ice’ stays cold without melting into water

Ovarian Suppression Boosts Outcomes in HR+/HER2+ Breast Cancer

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.