• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, August 18, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Brain circuitry shaped by competition for space as well as genetics

Bioengineer by Bioengineer
September 29, 2020
in Biology
Reading Time: 4 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Competition between nerve fibers for space in rodent brains shapes complex circuits called ‘whisker barrels’, providing new clues about the role of genes in brain development

IMAGE

Credit: James et al. (CC BY 4.0)

Complex brain circuits in rodents can organise themselves with genetics playing only a secondary role, according to a new computer modelling study published today in eLife.

The findings help answer a key question about how the brain wires itself during development. They suggest that simple interactions between nerve cells contribute to the development of complex brain circuits, so that a precise genetic blueprint for brain circuitry is unnecessary. This discovery may help scientists better understand disorders that affect brain development and inform new ways to treat conditions that disrupt brain circuits.

The circuits that help rodents process sensory information collected by their whiskers are a great example of the complexity of brain wiring. These circuits are organised into cylindrical clusters or ‘whisker barrels’ that closely match the pattern of whiskers on the animal’s face.

“The brain cells within one whisker barrel become active when its corresponding whisker is touched,” explains lead author Sebastian James, Research Associate at the Department of Psychology, University of Sheffield, UK. “This precise mapping between the individual whisker and its brain representation makes the whisker-barrel system ideal for studying brain wiring.”

James and his colleagues used computer modelling to determine if this pattern of brain wiring could emerge without a precise genetic blueprint. Their simulations showed that, in the cramped quarters of the developing rodent brain, strong competition for space between nerve fibers originating from different whiskers can cause them to concentrate into whisker-specific clusters. The arrangement of these clusters to form a map of the whiskers is assisted by simple patterns of gene expression in the brain tissue.

The team also tested their model by seeing if it could recreate the results of experiments that track the effects of a rat losing a whisker on its brain development. “Our simulations demonstrated that the model can be used to accurately test how factors inside and outside of the brain can contribute to the development of cortical fields,” says co-author Leah Krubitzer, Professor of Psychology at the University of California, Davis, US.

The authors suggest that this and similar computational models could be adapted to study the development of larger, more complex brains, including those of humans.

“Many of the basic mechanisms of development in the rodent barrel cortex are thought to translate to development in the rest of cortex, and may help inform research into various neurodevelopmental disorders and recovery from brain injuries,” concludes senior author Stuart Wilson, Lecturer in Cognitive Neuroscience at the University of Sheffield. “As well as reducing the number of animal experiments needed to understand cortical development, exploring the parameters of computational models like ours can offer new insights into how development and evolution interact to shape the brains of mammals, including ourselves.”

###

Reference

The paper ‘Modeling the emergence of whisker barrels’ can be freely accessed online at https://doi.org/10.7554/eLife.55588. Contents, including text, figures and data, are free to reuse under a CC BY 4.0 license.

Media contact

Emily Packer, Media Relations Manager

eLife

[email protected]

01223 855373

About eLife

eLife is a non-profit organisation created by funders and led by researchers. Our mission is to accelerate discovery by operating a platform for research communication that encourages and recognises the most responsible behaviours. We work across three major areas: publishing, technology and research culture. We aim to publish work of the highest standards and importance in all areas of biology and medicine, including Computational and Systems Biology and Developmental Biology, while exploring creative new ways to improve how research is assessed and published. We also invest in open-source technology innovation to modernise the infrastructure for science publishing and improve online tools for sharing, using and interacting with new results. eLife receives financial support and strategic guidance from the Howard Hughes Medical Institute, the Knut and Alice Wallenberg Foundation, the Max Planck Society and Wellcome. Learn more at https://elifesciences.org/about.

To read the latest Computational and Systems Biology research published in eLife, visit https://elifesciences.org/subjects/computational-systems-biology.

And for the latest in Developmental Biology, see https://elifesciences.org/subjects/developmental-biology.

Media Contact
Emily Packer
[email protected]

Original Source

https://elifesciences.org/for-the-press/753825c7/brain-circuitry-shaped-by-competition-for-space-as-well-as-genetics

Related Journal Article

http://dx.doi.org/10.7554/eLife.55588

Tags: Algorithms/ModelsBiologyDevelopmental/Reproductive BiologyMathematics/Statistics
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

New Study Identifies Gene Behind Vibrant Color Patterns in African Violet Flowers

August 18, 2025
blank

New Study Finds Preventing an Hour of Intense Pain in Chickens Costs Under One-Hundredth of a Cent

August 18, 2025

Unveiling Ancient Insights Behind Modern Cytoskeleton Evolution

August 15, 2025

Researchers Identify Molecular “Switch” Driving Chemoresistance in Blood Cancer

August 15, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Molecules in Focus: Capturing the Timeless Dance of Particles

    141 shares
    Share 56 Tweet 35
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    80 shares
    Share 32 Tweet 20
  • Modified DASH Diet Reduces Blood Sugar Levels in Adults with Type 2 Diabetes, Clinical Trial Finds

    59 shares
    Share 24 Tweet 15
  • Predicting Colorectal Cancer Using Lifestyle Factors

    47 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

AI and Precision Nutrition Boost Maternal, Child Health

Can Sunlight Treat Moderate Neonatal Hyperbilirubinemia?

Hyperglycemia in Preemies Linked to 18-Month Outcomes

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.