• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, November 23, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Topology-optimized thermal cloak-concentrator

Bioengineer by Bioengineer
September 24, 2020
in Science News
Reading Time: 2 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Garuda Fujii, Institute of Engineering, Shinshu University, Japan

Topology-optimized thermal cloak-concentrator realizes excellent cloaking and concentrating simultaneously although it is built of a simple composition. The thermal cloak-concentrator is not so easily effected by fluctuations of thermal conductivity and is designed by incorporating multiple objective functions under various thermal conductivities.

Garuda Fujii of Shinshu University succeeded in simplifying cloaking with the use of topology optimization. In previous studies, metamaterials, which are artificial structures were used to achieve two functions, such as cloaking and concentrating. However, metamaterials make it difficult to manufacture and performance is not easily improved because the performance estimation becomes approximate.

Previous studies investigated the use of general bulk materials, however, it is difficult to achieve multifunctionality and the studies look at just cloaking or concentrating only. By using topology optimization, which is a computational structural design methodology, researchers can use general bulk materials and realize multifunctionality.

The study looked at cloaking the concentrating system in thermal conduction and concentrating heat flux using general materials such as iron, copper, and PDMS. To create STL data of the optimized structures for future experimental demonstrations, they used a structural expression method that can handle the boundaries between different materials clearly and numerically, so called level set-boundary expression. The STL data is publicly available for those who would like to experiment with it.

This study relied on simulations, Associate Professor Fujii hopes to realize this performance in an experiment.

###

For more information on the study, please read, Cloaking a concentrator in thermal conduction via topology optimization.

Associate Professor Garuda Fujii’s Research Laboratory:

http://www.kankyo.shinshu-u.ac.jp/~garudalab/html/index_en.html

This work is supported by JSPS KAKENHI Grant number 17K17778.

Media Contact
Hitomi Thompson
[email protected]

Related Journal Article

http://dx.doi.org/10.1016/j.ijheatmasstransfer.2020.120082

Tags: Algorithms/ModelsComputer ScienceMechanical EngineeringSystems/Chaos/Pattern Formation/ComplexityTechnology/Engineering/Computer Science
Share13Tweet8Share2ShareShareShare2

Related Posts

Exploring Cryptosporidium parvum Diversity with BlooMine

Exploring Cryptosporidium parvum Diversity with BlooMine

November 23, 2025

Automated MRI System Revolutionizes Prostate Cancer Detection

November 23, 2025

Predictive Analytics Shape Cardiac Surgery Outcomes

November 23, 2025

Enhanced U-Net and Style Transfer for Shallow Relief

November 23, 2025
Please login to join discussion

POPULAR NEWS

  • New Research Unveils the Pathway for CEOs to Achieve Social Media Stardom

    New Research Unveils the Pathway for CEOs to Achieve Social Media Stardom

    202 shares
    Share 81 Tweet 51
  • Scientists Uncover Chameleon’s Telephone-Cord-Like Optic Nerves, A Feature Missed by Aristotle and Newton

    119 shares
    Share 48 Tweet 30
  • Neurological Impacts of COVID and MIS-C in Children

    93 shares
    Share 37 Tweet 23
  • Scientists Create Fast, Scalable In Planta Directed Evolution Platform

    96 shares
    Share 38 Tweet 24

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Exploring Cryptosporidium parvum Diversity with BlooMine

Automated MRI System Revolutionizes Prostate Cancer Detection

Predictive Analytics Shape Cardiac Surgery Outcomes

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 69 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.