• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, October 9, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Mining molecular data with cryo-EM unveils hidden biological secrets

Bioengineer by Bioengineer
September 22, 2020
in Health
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: The Biodesign Institute at ASU

The field of structural biology has made enormous strides, peering into the activities of nature at the tiniest scale. Such investigations are critical for charting the behavior of important macromolecules and understanding their essential role in living organisms.

Researchers at the Biodesign Center for Applied Structural Discovery and ASU’s School of Molecular Sciences have taken a new approach to studying molecules of life, examining not only their static structures at high resolution but the all-important dynamic movements of such molecules as they carry out biological functions.

The new method involves an aggressive reprocessing of data obtained through a groundbreaking technique known as cryogenic electron microscopy or cryo-EM. Here, molecules targeted for study are flash-frozen in a thin membrane of ice before being subjected to electron microscopy. Tens or even hundreds of thousands of still images are collected, then reassembled by means of computer.

The technique offers a powerful alternative to X-ray crystallography for probing the molecular world in keen detail. Indeed, cryo-EM excels in the areas of study that are most challenging for X-ray crystallography, the imaging of large protein complexes resistant to conventional crystallization methods.

Although early iterations of cryo-EM struggled to compete with the extreme image resolution characteristic of X-ray crystallography, rapid advances in the field now enable cryo-EM to produce stunning macromolecular images at near-atomic-resolution.

In the new study, Abhishek Singharoy and his colleagues demonstrate that cryo-EM can be pushed to even greater extremes of clarity, by extracting precious information previously buried in the reams of cryo-EM data.

“Now, we can actually see minimum free-energy pathways image-by-image during a simulation,” Singharoy says. “It was impossible to see energetically feasible molecular movies before. Now cryo-EM, machine learning and molecular dynamics simulations have got us there.”

Abhishek is joined by joint first authors Ali Dashti and Ghoncheh Mashayekhi of the Department of Physics, University of Wisconsin Milwaukee and ASU researcher Mrinal Shekhar. The new study is the result of a collaboration between five groups: Abbas Ourmazd’s, and Peter Schwander’s at the University of Wisconsin in Milwaukee, Joachim Frank’s at Columbia Medical Center, Amedee des Georges at CUNY, and Singharoy at ASU.

The findings are reported in the current issue of the journal Nature Communications.

Applying the new strategy pioneered by co-authors Abbas Ourmazd and 2017 Chemistry Nobel Laureate Joachim Frank, which involves mathematical techniques of geometric machine learning combined with classical molecular dynamics simulations, helped researchers capture the fleeting movements of ryanodine receptor type 1, an important calcium channel able to bind other molecules. Subtle conformational changes of the receptor play a crucial role in the contraction of skeletal muscle and muscles of the heart, once the receptor has been triggered by a specific binding molecule.

Using single-particle cryo-EM, the group was able to assemble impressive molecular movies of ryanodine receptor type 1’s continuous conformational changes, built from some 800,000 cryo-EM snapshots of molecules trapped in ice, like insects entombed in amber.

Combining snapshots that were intermediary between the fully closed and open conformations helped capture this receptor’s structural shape-shifting before and after binding by activating molecules.

The new technique will be a boon in practical areas, particularly, drug discovery, while helping to resolve foundational issues in molecular biology.

###

Media Contact
richard harth
[email protected]

Original Source

https://biodesign.asu.edu/news/mining-molecular-data-cryo-em-unveils-hidden-biological-secrets

Related Journal Article

http://dx.doi.org/10.1038/s41467-020-18403-x

Tags: BiochemistryBiologyDiagnosticsHardwareMolecular BiologyOpticsResearch/Development
Share12Tweet8Share2ShareShareShare2

Related Posts

Cardiovascular Issues Heighten Oxidative Stress in Migraines

October 9, 2025

Mutation Hotspots Reveal Spermatogonia Clonal Growth

October 9, 2025

Overcoming Challenges in Long-Term Care for Young Cancer Survivors

October 9, 2025

Age and Gender Bias in AI Media

October 9, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1145 shares
    Share 457 Tweet 286
  • New Study Reveals the Science Behind Exercise and Weight Loss

    100 shares
    Share 40 Tweet 25
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    95 shares
    Share 38 Tweet 24
  • Ohio State Study Reveals Protein Quality Control Breakdown as Key Factor in Cancer Immunotherapy Failure

    80 shares
    Share 32 Tweet 20

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Cardiovascular Issues Heighten Oxidative Stress in Migraines

Mutation Hotspots Reveal Spermatogonia Clonal Growth

Overcoming Challenges in Long-Term Care for Young Cancer Survivors

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 62 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.