• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Researchers discover cyber vulnerabilities affecting bluetooth based medical devices

Bioengineer by Bioengineer
September 21, 2020
in Science News
Reading Time: 2 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

The Greyhound framework, named after the breed of dogs known for their hunting abilities, was designed and implemented by an SUTD-led research team to systematically sniff out security lapses in Wi-Fi and Bluetooth enabled devices.

IMAGE

Credit: SUTD

Internet-of-Things (IoT) such as smart home locks and medical devices, depend largely on Bluetooth low energy (BLE) technology to function and connect across other devices with reduced energy consumption. As these devices get more prevalent with increasing levels of connectivity, the need for strengthened security in IoT has also become vital.

A research team, led by Assistant Professor Sudipta Chattopadhyay from the Singapore University of Technology and Design (SUTD), with team members from SUTD and the Institute for Infocomm Research (I2R), designed and implemented the Greyhound framework, a tool used to discover SweynTooth – a critical set of 11 cyber vulnerabilities.

Their study was presented at the USENIX Annual Technical Conference (USENIX ATC) on 15 to 17 July 2020 and they have been invited to present at the upcoming Singapore International Cyber Week (SICW) in October 2020.

These security lapses were found to affect devices by causing them to crash, reboot or bypass security features. At least 12 BLE based devices from eight vendors were affected, including a few hundred types of IoT products including pacemakers, wearable fitness trackers and home security locks.

The SweynTooth code has since been made available to the public and several IoT product manufacturers have used it to find security issues in their products. In Singapore alone, 32 medical devices reported to be affected by SweynTooth and 90% of these device manufacturers have since implemented preventive measures against this set of cyber vulnerabilities.

Regulatory agencies including the Cyber Security Agency and the Health Sciences Authority in Singapore as well as the Department of Homeland Security and the Food and Drug Administration in the United States have reached out to the research team to further understand the impact of these vulnerabilities.

These agencies have also raised public alerts to inform medical device manufacturers, healthcare institutions and end users on the potential security breach and disruptions. The research team continues to keep them updated on their research findings and assessments.

Beyond Bluetooth technology, the research team designed the Greyhound framework using a modular approach so that it could easily be adapted for new wireless protocols. This allowed the team to test it across the diverse set of protocols that IoTs frequently employ. This automated framework also paves new avenues in the testing security of more complex protocols and IoTs in next-generation wireless protocol implementations such as 5G and NarrowBand-IoT which require rigorous and systematic security testing.

“As we are transitioning towards a smart nation, more of such vulnerabilities could appear in the future. We need to start rethinking the device manufacturing design process so that there is limited reliance on communication modules such as Bluetooth to ensure a better and more secure smart nation by design,” explained principal investigator Assistant Professor Sudipta from SUTD.

###

Media Contact
Jessica Sasayiah
[email protected]

Original Source

https://www.usenix.org/conference/atc20/presentation/garbelini

Tags: Computer ScienceInternetResearch/DevelopmentSystem Security/HackersTechnology/Engineering/Computer ScienceTheory/Design
Share12Tweet8Share2ShareShareShare2

Related Posts

Evaluating Pediatric Emergency Care Quality in Ethiopia

February 7, 2026

TPMT Expression Predictions Linked to Azathioprine Side Effects

February 7, 2026

Improving Dementia Care with Enhanced Activity Kits

February 7, 2026

Decoding Prostate Cancer Origins via snFLARE-seq, mxFRIZNGRND

February 7, 2026
Please login to join discussion

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Evaluating Pediatric Emergency Care Quality in Ethiopia

TPMT Expression Predictions Linked to Azathioprine Side Effects

Improving Dementia Care with Enhanced Activity Kits

Subscribe to Blog via Email

Success! An email was just sent to confirm your subscription. Please find the email now and click 'Confirm' to start subscribing.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.