• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, August 30, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Illinois researchers discover hot hydrogen atoms in Earth’s upper atmosphere

Bioengineer by Bioengineer
December 6, 2016
in Science News
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Jianqi Qin, University of Illinois

A team of University of Illinois researchers has discovered the existence of hot atomic hydrogen (H) atoms in an upper layer of Earth's atmosphere known as the thermosphere. This finding, which the authors report in Nature Communications, significantly changes current understanding of the H distribution and its interaction with other atmospheric constituents.

Because H atoms are very light, they can easily overcome a planet's gravitational force and permanently escape into interplanetary space. The ongoing atmospheric escape of H atoms is one reason why Earth's sister planet, Mars, has lost the majority of its water. In addition, H atoms play a critical role in the physics governing the Earth's upper atmosphere and also serve as an important shield for societies' technological assets, such as the numerous satellites in low earth orbit, against the harsh space environment.

"Hot H atoms had been theorized to exist at very high altitudes, above several thousand kilometers, but our discovery that they exist as low as 250 kilometers was truly surprising," said Lara Waldrop, an assistant professor of electrical and computer engineering and principle investigator of the project. "This result suggests that current atmospheric models are missing some key physics that impacts many different studies, ranging from atmospheric escape to the thermal structure of the upper atmosphere."

The discovery was enabled by the development of new numerical techniques and their application to years' worth of remote sensing measurements acquired by NASA's Thermosphere Ionosphere Mesosphere Energetics and Dynamics (TIMED) satellite.

"Classical assumptions about upper atmospheric physics didn't allow for the presence of hot H atoms at these heights," recalled Jianqi Qin, the research scientist who developed the data analysis technique. "Once we changed our approach to avoid this unphysical assumption, we were able to correctly interpret the data for the first time."

Atomic hydrogen efficiently scatters ultraviolet radiation emitted by the sun, and the amount of scattered light sensitively depends on the amount of H atoms that are present in the atmosphere. As a result, remote observations of the scattered H emission, such as those made by NASA's TIMED satellite, can be used to probe the abundance and spatial distribution of this key atmospheric constituent. In order to extract information about the upper atmosphere from such measurements, one needs to calculate exactly how the solar photons are scattered, which falls into Qin's unique expertise.

Under support from the National Science Foundation and NASA, the researchers developed a model of the radiative transfer of the scattered emission along with a new analysis technique that incorporated a transition region between the lower and upper extents of the H distribution.

"It turns out that the new model fits the measurements perfectly," said Qin. "Our analysis of the TIMED data led to the counter-intuitive finding that the temperature of the H atoms in the thermosphere increases significantly with declining solar activity, in contrast to the ambient atmospheric temperature, which decreases with declining solar activity."

Their results also show that the presence of such hot H atoms in the thermosphere significantly affects the distribution of the H atoms throughout the entire atmosphere. The origin of such hot H atoms, previously thought not to be able to exist in the thermosphere, is still a mystery.

"We know that there must be a source of hot H atoms, either in the local thermosphere or in more distant layers of the atmosphere, but we do not have a solid answer yet," said Waldrop.

Qin added, "We will definitely keep working on this puzzle, because knowledge about the H density distribution is critical to the investigation of our atmospheric system as well as its response to space weather, which affects many space-based technologies that are so important for our modern society."

###

Media Contact

Lara Waldrop
[email protected]
217-300-0957
@EngineeringAtIL

http://engineering.illinois.edu/

############

Story Source: Materials provided by Scienmag

Share12Tweet8Share2ShareShareShare2

Related Posts

Graded Nursing Interventions Reduce Stress in Liver Cancer Patients

August 30, 2025

Decoding Neuromodulation Biomarkers for Mental Health

August 30, 2025

Impact of Environment on Hornbill Behavior in Zoos

August 30, 2025

Predicting Hodgkin’s Lymphoma Response with PET/CT

August 30, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    151 shares
    Share 60 Tweet 38
  • Molecules in Focus: Capturing the Timeless Dance of Particles

    142 shares
    Share 57 Tweet 36
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    116 shares
    Share 46 Tweet 29
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    82 shares
    Share 33 Tweet 21

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Graded Nursing Interventions Reduce Stress in Liver Cancer Patients

Decoding Neuromodulation Biomarkers for Mental Health

Impact of Environment on Hornbill Behavior in Zoos

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.