• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, October 5, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

New public-private projects to speed fusion energy development come to PPPL

Bioengineer by Bioengineer
September 4, 2020
in Chemistry
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Photos and collage by Elle Starkman/PPPL Office of Communications

World-class expertise in confining and stabilizing the plasma that fuels fusion
reactions has brought two new public-private collaborations to the U.S. Department of Energy’s (DOE) Princeton Plasma Physics Laboratory (PPPL). The new awards, made by the DOE’s Innovation Network for Fusion Energy (INFUSE) program, will bring together PPPL physicist Walter Guttenfelder with Britain’s Tokamak Energy, and PPPL’s Zhirui Wang and Dylan Brennan with General Fusion of Canada.

PPPL’s world-class modeling skill

The one-year collaborations aim to advance efforts to capture and control on Earth the fusion energy that powers the sun and stars. “These partnerships recognize PPPL’s world-class skill in modeling fusion plasmas,” said Ahmed Diallo, a PPPL physicist and deputy director of the INFUSE program. “The goal of INFUSE is to leverage the capabilities of national laboratories to enhance private fusion development.”

Fusion combines light elements in the form of plasma ¬– the state of matter composed of free electrons and atomic nuclei that makes up 99 percent of the visible universe — to produce vast energy. Scientists around the world are seeking to duplicate the process as a virtually unlimited source of energy for generating electricity.

The private developers are joining with PPPL for modeling analysis. Tokamak Energy, a 2009 spinoff from Britain’s Culham Centre for Fusion Energy, is developing a compact spherical tokamak with high-temperature superconducting magnets that can reduce the size of future fusion reactors. The company has turned to Guttenfelder to model the sources and strength of the microturbulence that causes heat to escape from tokamaks.

Modeling Tokamak Energy configurations

Guttenfelder will conduct gyrokinetic simulations, which model plasma particles orbiting magnetic field lines, to predict microturbulent behavior. “This is my expertise, especially for spherical configurations,” he said. “The bulk of my responsibilities will be to perform these simulations and modeling analyses for conceptual reactor configurations to probe which might perform most optimally.”

General Fusion, founded in 2003, is pursuing a novel approach to the development of fusion energy. Its facility, called a magnetized target fusion (MTF) machine, uses pistons to compress plasma tightly enough to produce fusion energy. A key requirement of this technique is for the plasma to remain stable during compression. The company is therefore turning to PPPL’s Wang and Brennan, physicists on the forefront of stability theory, to help achieve this goal.

The two physicists will work with General Fusion to apply advanced stability theory to prevent instabilities from forming during compression scenarios. Wang was a major developer of the MARS code for analyzing instabilities, as well as a developer of the RDCON code with similar capabilities. Brennan, a leading expert on stability physics, has long been collaborating with General Fusion.

Codes to support General Fusion

The PPPL physicists will now modify and apply the MARS code to plasma compression and will provide technical support for application of the MARS and RDCON codes to experiments. “Dylan and I will run these codes to support General Fusion and we’ve already started discussing work for the project,” said Wang. Concurred Brennan: “Zhirui is entering into the same collaboration I’ve been working with for years and we’ll be working on it together.”

###

The two new projects bring to six the number of INFUSE collaborations with private industry that PPPL has been awarded since the DOE launched the program in 2019. Previous PPPL collaborators, working with the companies TAE Technologies, Commonwealth Fusion Systems and HelicitySpace, include physicists Elena Belova, Nicola Bertelli, Mario Podesta, Gerrit Kramer and engineer Clement Bovet.

PPPL, on Princeton University’s Forrestal Campus in Plainsboro, N.J., is devoted to creating new knowledge about the physics of plasmas — ultra-hot, charged gases — and to developing practical solutions for the creation of fusion energy. The Laboratory is managed by the University for the U.S. Department of Energy’s Office of Science, which is the single largest supporter of basic research in the physical sciences in the United States and is working to address some of the most pressing challenges of our time. For more information, visit energy.gov/science.

Media Contact
John Greenwald
[email protected]

Original Source

https://www.pppl.gov/news/2020/09/new-public-private-projects-speed-fusion-energy-production-come-pppl

Tags: Chemistry/Physics/Materials SciencesNuclear PhysicsResearch/Development
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Selective Arylating Uncommon C–F Bonds in Polyfluoroarenes

October 4, 2025
Building Larger Hydrocarbons for Optical Cycling

Building Larger Hydrocarbons for Optical Cycling

October 4, 2025

Scientists Discover How Enzymes “Dance” During Their Work—and Why It Matters

October 4, 2025

Electron Donor–Acceptor Complexes Enable Asymmetric Photocatalysis

October 4, 2025
Please login to join discussion

POPULAR NEWS

  • New Study Reveals the Science Behind Exercise and Weight Loss

    New Study Reveals the Science Behind Exercise and Weight Loss

    94 shares
    Share 38 Tweet 24
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    92 shares
    Share 37 Tweet 23
  • Physicists Develop Visible Time Crystal for the First Time

    75 shares
    Share 30 Tweet 19
  • New Insights Suggest ALS May Be an Autoimmune Disease

    70 shares
    Share 28 Tweet 18

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Racial Disparities in Anticoagulant Use for Atrial Fibrillation

ICU Nurses’ Perspectives on End-of-Life Care

Exploring Splicing Patterns in Medicinal Rheum Palmatum

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 62 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.