• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Discovery of unconventional hall effect

Bioengineer by Bioengineer
September 3, 2020
in Chemistry
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: ©Science China Press

Hall effect plays an important role in the development of condensed matter physics. The classical Hall effect was discovered by American physicist E. H. Hall in 1879. When an electric current passes through a conductor under an out-of-plane magnetic field, a transverse Hall voltage appears in the direction perpendicular to both the magnetic field and the current. In condensed matter systems, apart from the dynamical phase of a Bloch electron, geometrical phase (Berry phase) must also be considered. The Berry curvature corresponding to Berry phase will generate an anomalous velocity that is perpendicular to the applied electric field, leading to transverse Hall signals. Recent studies have shown that in topological materials, when the magnetic field and current are coplanar, Berry curvature will induce planar Hall effect (PHE). On one hand, different from classical Hall effect, planar Hall resistivity ρyx is an even function of magnetic field (namely, symmetric to magnetic field, ρyx (-B)=ρyx(B)). On the other hand, PHE will vanish when in-plane magnetic field is perpendicular (B?I) or parallel (B?I) to the current, same as the classical Hall effect.

Recently, Professor Jian Wang in collaborated with Professor Xincheng Xie at Peking University, Professor Haiwen Liu at Beijing Normal University, Dr. Jiaqiang Yan and Professor David Mandrus at Oak Ridge National Laboratory etc discovered unconventional Hall effect in non-magnetic topological material ZrTe5 devices. Nonzero Hall effect was observed when in-plane magnetic field is perpendicular (B?I) or parallel (B?I) to the current. The paper entitled “Unconventional Hall Effect induced by Berry Curvature” was published online in National Science Review. Professor Jian Wang and Professor Xincheng Xie at Peking University are corresponding authors of this paper. PhD candidate Jun Ge and Dr. Da Ma at Peking University contribute equally to this work.

The research team performed systematic transport measurements on ZrTe5 devices (Fig. 1(a)) in both Physical Property Measurement System and a dilution refrigerator with triple axes vector magnet. With well-controlled angular-dependent transport measurements (Fig. 1(b)), the research team excluded the extrinsic influence of longitudinal resistance and classical Hall effect, and detected intrinsic in-plane Hall response of ZrTe5 devices. The observed in-plane Hall signal of ZrTe5 devices contains both symmetric (Fig. 1(c)) and asymmetric (Fig. 1(d)) components with respect to the magnetic field. More interestingly, nonzero in-plane Hall signal is detected for B?I (Fig. 2(a-c)) and B?I (Fig. 2(d-f)) situations. These discoveries are beyond the expectations of classical Hall effect and previously suggested PHE in topological materials.

The origin of the observed unconventional Hall effect is revealed by theoretical calculations. The researchers find that ZrTe5 can be considered as a Weyl semimetal with tiled Weyl cones under external magnetic field. The tilt of Weyl cones, the anomalous velocity induced by Berry curvature, the chiral chemical potential, and phase volume effect together give rise to the observed unconventional Hall effect. A new formula for in-plane Hall signal is proposed, which can well fit the experimental observation (Fig. 3).

The nonzero in-plane Hall signals when magnetic field is parallel or perpendicular to the current adds a new member to the Hall effect family. This work provides a new platform to investigate Berry curvature related physics in condensed matter systems.

###

See the article:

Jun Ge, Da Ma, Yanzhao Liu, Huichao Wang, Yanan Li, Jiawei Luo, Tianchuang Luo, Ying Xing, Jiaqiang Yan, David Mandrus, Haiwen Liu, X.C. Xie, Jian Wang

Unconventional Hall Effect induced by Berry Curvature

https://doi.org/10.1093/nsr/nwaa163

Media Contact
Jian Wang
[email protected]

Related Journal Article

http://dx.doi.org/10.1093/nsr/nwaa163

Tags: Chemistry/Physics/Materials Sciences
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Breakthrough in Environmental Cleanup: Scientists Develop Solar-Activated Biochar for Faster Remediation

February 7, 2026
blank

Cutting Costs: Making Hydrogen Fuel Cells More Affordable

February 6, 2026

Scientists Develop Hand-Held “Levitating” Time Crystals

February 6, 2026

Observing a Key Green-Energy Catalyst Dissolve Atom by Atom

February 6, 2026
Please login to join discussion

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Evaluating Pediatric Emergency Care Quality in Ethiopia

TPMT Expression Predictions Linked to Azathioprine Side Effects

Improving Dementia Care with Enhanced Activity Kits

Subscribe to Blog via Email

Success! An email was just sent to confirm your subscription. Please find the email now and click 'Confirm' to start subscribing.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.