• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, October 11, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

How do tumor cells divide in the crowd?

Bioengineer by Bioengineer
September 2, 2020
in Biology
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: © Dr. Elisabeth Fischer-Friedrich

Most animal cells need to become spherical in order to divide. To achieve this round shape, the cells must round up and deform their neighboring cells. In a growing tumor tissue, the tumor cells need to divide in an environment that is becoming more crowded than the healthy tissue. This means that the dividing tumor cells likely need to generate much higher mechanical forces to round up in such a densely packed surrounding. Yet, tumor cells seem to be adapted to overcome these difficulties. Scientists led by Dr. Elisabeth Fischer-Friedrich were curious how do the tumor cells gain this enhanced ability to deal with the crowded tumor environment?

The researchers found that the EMT could be one of the answers. What is it exactly? “EMT or epithelial-mesenchymal transition is a hallmark of cancer progression,” says Kamran Hosseini, PhD student who performed the experiments. It is a cell transformation during which tumor cells lose their asymmetric organization and detach from their neighbors, gaining the ability to migrate into other tissues. This, together with other factors, allows tumors to metastasize, i.e., move into the blood and lymphatic vessels and ultimately colonize other organs.

“So far, EMT has been mainly linked to this enhanced cell dissociation and cell migration. Our results suggest that EMT might also influence cancer cells by promoting successful rounding and cell division. These results point towards a completely new direction of how EMT could promote metastasis of carcinoma in the body,” explains Kamran Hosseini.

Just as we test the ripeness of the fruits by squeezing them gently with our hands, the scientists examined the mechanical properties of individual human cells. Except, they squished the cells using an atomic force microscope. This state-of-the-art setup measured properties such as cell stiffness and cell surface tension before and after the EMT. In addition, the group of Dr. Elisabeth Fischer-Friedrich in collaboration with Dr. Anna Taubenberger (BIOTEC, TU Dresden) and Prof. Carsten Werner (IPF, Dresden) cultured mini-tumors and trapped them inside elastic hydrogels to check how mechanical confinement affects cell rounding and division of tumor cells.

The authors identified changes in rounding and growth of the tumor. EMT influenced the cancer cells in two contrasting ways. The dividing tumor cells became stiffer while surrounding non-dividing cells became softer. Furthermore, the researchers found hints that the observed mechanical changes could be linked to the increased activity of a protein called Rac1, a known regulator of the cytoskeleton.

“Our findings will not only provide important results to the field of cell biology but may also identify new targets for cancer therapeutics,” says Dr. Elisabeth Fischer-Friedrich.

###

Publication:
Advanced Science: „EMT-Induced Cell-Mechanical Changes Enhance Mitotic Rounding Strength”, Authors: Kamran Hosseini, Anna Taubenberger, Carsten Werner, and Elisabeth Fischer-Friedrich
https://onlinelibrary.wiley.com/doi/10.1002/advs.202001276

This study was founded by the German Research Foundation (DFG) and performed in collaboration with the Light Microscopy Facility (LMF) of the CMCB Technology Platform at TU Dresden. Dr. Elisabeth Fischer-Friedrich is a core group at the newly formed Physics of Life Cluster of Excellence (PoL) at TU Dresden.

The Biotechnology Center (BIOTEC) was founded in 2000 as a central scientific unit of the TU Dresden with the goal of combining modern approaches in molecular and cell biology with the traditionally strong engineering in Dresden. Since 2016, the BIOTEC is part of the central scientific unit “Center for Molecular and Cellular Bioengineering” (CMCB) of the TU Dresden. The BIOTEC is fostering developments in research and teaching within the Molecular Bioengineering research field and combines approaches in cell biology, biophysics and bioinformatics. It plays a central role within the research priority area Health Sciences, Biomedicine and Bioengineering of the TU Dresden.

http://www.tu-dresden.de/biotec

http://www.tu-dresden.de/cmcb

Media Contact
Elisabeth Fischer-Friedrich
[email protected]

Related Journal Article

http://dx.doi.org/10.1002/advs.202001276

Tags: BiologyCell Biology
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

New Framework Uncovers Differential Chromatin Interactions

October 11, 2025
Sex Differences in Pig Blood Gene Expression

Sex Differences in Pig Blood Gene Expression

October 11, 2025

RLCKs Phosphorylate RopGEFs to Regulate Arabidopsis Growth

October 10, 2025

Discovering New Proteomic Biomarkers for Hypertension

October 10, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1207 shares
    Share 482 Tweet 301
  • New Study Reveals the Science Behind Exercise and Weight Loss

    102 shares
    Share 41 Tweet 26
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    97 shares
    Share 39 Tweet 24
  • Revolutionizing Optimization: Deep Learning for Complex Systems

    86 shares
    Share 34 Tweet 22

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Easing Caregiver Stress for Heart Surgery Families

Essential Role of Negative Training Data in Antibody Predictions

Unveiling Kidney Functions with Spatial Proteomics

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 63 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.