• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Ecologists put biodiversity experiments to the test

Bioengineer by Bioengineer
August 24, 2020
in Biology
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Findings from experimental sites are reliable.

IMAGE

Credit: Forest Isbell

Much of our knowledge of how biodiversity benefits ecosystems comes from experimental sites. These sites contain combinations of species that are not found in the real world, which has led some ecologists to question the findings from biodiversity experiments. But the positive effects of biodiversity for the functioning of ecosystems are more than an artefact of experimental design. This is the result of a new study led by an international team of researchers from the German Centre for Integrative Biodiversity Research (iDiv), Leipzig University (UL), the University of Bern and the Senckenberg Biodiversity and Climate Research Centre. For their study, they removed ‘unrealistic’ communities from the analysis of data from two large-scale experiments. The results that have now been published in Nature Ecology & Evolution show that previous findings are, indeed, reliable.

To most it might not matter much if a handbag is a costly original or an affordable counterfeit, but when it comes to nature, imitations could be a whole other matter. Much of what we know about the consequences of biodiversity loss for the ecosystem functions that support life has been gathered from biodiversity experiment sites in which vegetation types of differing plant species richness are created to imitate biodiversity loss. However, the insights gained here have been repeatedly questioned because the design of such experiments includes vegetation types that are rare or non-existent in the real world. “Previously, there was little information on how much the plant communities in biodiversity experiments quantitatively differ from those in the real world. We simply did not know what impact such differences might have on the conclusions drawn from the experiments,” said lead author Dr Malte Jochum, researcher at iDiv and UL and previously at the University of Bern.

A collaborative and international study has now put nature’s counterfeits to the test. The researchers compared the vegetation of two of the largest and longest-running grassland biodiversity experiments globally with equivalent ‘real-world’ sites. One of the sites investigated is the Jena Experiment in Germany. It was compared to semi-natural grasslands nearby and a large set of scientifically monitored agricultural sites across Germany, known as the Biodiversity Exploratories.

“We first looked at the sites to see how much they differ in terms of how many species they had, how related they were and what types of functional properties were seen. To our surprise the experimental sites turned out to be much more varied than the real world and to have certain types of vegetation which you would find not in the wild. At the Jena Experiment only 28 per cent of the experimental plots could be considered similar enough to the natural vegetation that we could class them as realistic,” said Dr Peter Manning, co-author of the study and researcher at the Senckenberg Biodiversity and Climate Research Centre.

Next, they compared the results of the entire biodiversity experiments to a subset of the experimental data that contained only the realistic plots. “Remarkably, the results hardly changed. For ten out of twelve relationships between species richness and ecosystem functioning, the results do not differ significantly between all experiment sites and the subset of only the realistic ones. This suggests that the relationship between biodiversity and ecosystem function seen in these experiments is likely also operating in the more complex real world”, explained Jochum.

The researchers conclude that their results show the validity of insights about the effects of biodiversity loss gained by investigating biodiversity experiment sites. “In recent years the public have become increasingly aware that biodiversity underpins the Earths life support systems and that its loss threatens humanity. What they might be less aware of is debate among the scientific community about just how important a role biodiversity plays. By resolving a long running debate these results give us even greater confidence that biodiversity really is a major player, and that conserving it is essential if we are to live well in the future,” Manning said.

###

Media Contact
Malte Jochum
[email protected]

Original Source

https://www.nature.com/articles/s41559-020-1280-9

Related Journal Article

http://dx.doi.org/10.1038/s41559-020-1280-9

Tags: BiodiversityBiologyEcology/Environment
Share12Tweet8Share2ShareShareShare2

Related Posts

Florida Cane Toad: Complex Spread and Selective Evolution

Florida Cane Toad: Complex Spread and Selective Evolution

February 7, 2026
New Study Uncovers Mechanism Behind Burn Pit Particulate Matter–Induced Lung Inflammation

New Study Uncovers Mechanism Behind Burn Pit Particulate Matter–Induced Lung Inflammation

February 6, 2026

DeepBlastoid: Advancing Automated and Efficient Evaluation of Human Blastoids with Deep Learning

February 6, 2026

Navigating the Gut: The Role of Formic Acid in the Microbiome

February 6, 2026
Please login to join discussion

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Personalized Guide to Understanding and Reducing Chemicals

Inflammasome Protein ASC Drives Pancreatic Cancer Metabolism

Phage-Antibiotic Combo Beats Resistant Peritoneal Infection

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.