• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Quest for quantum Internet gets a boost with new technique for making entanglement

Bioengineer by Bioengineer
August 19, 2020
in Science News
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Tomoyuki Horikiri, Yokohama National University

Traditional ways of producing entanglements, necessary for the development of any “quantum internet” linking quantum computers, are not very well suited for fiber optic telecoms networks used by today’s non-quantum internet. However, researchers have come up with a new way to produce such particles that is much more compatible.

In today’s telecoms network, connected by fiber-optic cable, the photons that are transmitted tend to be absorbed within a few kilometers by the material the cable is made out of. In order to avoid deterioration of the signal, repeaters are established at regular intervals to amplify it.

Similar problems will bedevil efforts towards quantum communications — and ultimately a quantum internet. Tomoyuki Horikiri and colleagues at Yokohama National University are tackling this issue by developing a new source of entangled photons.

Their findings were published on August 12 in Communications Physics.

A pair of particles, or qubits, becomes entangled when the quantum state of each of them is inescapably connected to the quantum state of the other particle. Therefore, a measurement performed on one qubit will always be correlated to a measurement on the other qubit, regardless of the distance.

This entanglement, famously described in pop-science explanations as “spooky action at a distance,” is key to any quantum communication infrastructure of the future.

Exploiting this spooky phenomenon, researchers can use entangled photons to transfer information between two locations. The sender has half the entangled photons and the receiver has the other half. The two users, for example, can establish a random secret bit string for encryption by the shared entanglement.

But long-distance quantum communication also suffers from optical fiber losses, with entangled photons becoming disentangled due to interaction with their surroundings, and quantum repeaters, where quantum memories are loaded, would be necessary for prolonging the distance of quantum communication. The repeater stores quantum state of photon sent by users. . An entanglement “swapping,” performed by a measurement on the photons, effectively propagates the entanglement over much longer distances – like runners handing off batons in a relay race.

A quantum repeater works via a repeated exchange of quantum states between light and matter. This requires a source of entangled particles that is compatible with quantum memory. Unfortunately, quantum memory generally absorbs a narrow width of a light beam’s spectrum (known as linewidth), but traditional sources of a quantum-entangled pair of photons have a wide spectrum. This results in very poor coupling between an entangled photon pair and the quantum memory.

So far, efforts to develop sources of entangled photons have struggled to meet all the requirements for repeater-quantum memory compatibility and real-world application: a high number of photons (for large amounts of traffic), narrow linewidth, and high entanglement fidelity.

For decades, the most common way to produce entangled particles has been a technique called spontaneous parametric down-conversion, or SPDC. It uses crystals to convert single high-energy photons into pairs of entangled photons with half the original energy.

“This has been great for quantum information experiments,” said Horikiri. “But for broadband quantum communications, SPDC is not very compatible with the very narrow energy transitions involved in production of the quantum memory needed for quantum repeaters.”

The researchers improved upon this technique in effect by placing the crystal in a bowtie shaped optical cavity, and were able to successfully propagate entangled photons over ten kilometers through optical fiber, repeated once for a total overall distance of 20 kilometers.

Following on from this proof of concept for a new source of quantum-memory-compatible entangled photons that can be deployed through fiber-optic cable with low losses, the researchers now want to deploy their technique via multiple repeater nodes for much longer distances.

###

Yokohama National University (YNU or Yokokoku) is a Japanese national university founded in 1949. YNU provides students with a practical education utilizing the wide expertise of its faculty and facilitates engagement with the global community. YNU’s strength in the academic research of practical application sciences leads to high-impact publications and contributes to international scientific research and the global society. For more information, please see: https://www.ynu.ac.jp/english/

Media Contact
Akiko Tsumura
[email protected]

Related Journal Article

http://dx.doi.org/10.1038/s42005-020-00406-1

Tags: Chemistry/Physics/Materials SciencesOpticsTechnology/Engineering/Computer ScienceTelecommunications
Share12Tweet8Share2ShareShareShare2

Related Posts

Phage-Antibiotic Combo Beats Resistant Peritoneal Infection

February 7, 2026

Boosting Remote Healthcare: Stepped-Wedge Trial Insights

February 7, 2026

Barriers and Boosters of Seniors’ Physical Activity in Karachi

February 7, 2026

Evaluating Pediatric Emergency Care Quality in Ethiopia

February 7, 2026
Please login to join discussion

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Phage-Antibiotic Combo Beats Resistant Peritoneal Infection

Boosting Remote Healthcare: Stepped-Wedge Trial Insights

Barriers and Boosters of Seniors’ Physical Activity in Karachi

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.